首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solid solutions Ni(Al, Mo, C) are formed via milling the Ni2.8Al1Mo0.2 and Ni3Al0.8Mo0.2 and graphite-containing Ni2.8Al1Mo0.2C(0.25, 0.5) and Ni3Al0.8Mo0.2C(0.25, 0.5) mixtures. In this case, some amount of Mo remains beyond the solid solution. Graphite added to a starting mixture decreases the Mo solubility and favors the amorphization of solid solutions. The complete amorphization was found for the mixture with the 5 at % C and 5 at % Mo, which was added instead of Ni. The heating of mechanically synthesized (MS) powder alloys leads to the ordering of carbon-free and carbon-containing solid solutions with the formation of the L12 and E21 structure, respectively. In the course of the ordering of the Ni(Al, Mo, C) solid solutions, Mo and carbon precipitate in the form of the molybdenum carbide (Mo2C) second phase. The hardness of the MS three-phase Ni-Al-Mo-C solid solutions subjected to hot isostatic pressing is determined by the mass fraction of the formed Mo2C carbide. It is shown that the carbon content in the multicomponent antiperovskite can be estimated by analyzing the ratio of integral intensities of superlattice reflections I (100)/I (110).  相似文献   

2.
Ni75Nb12B13 alloys were synthesized by mechanical alloying (MA) of individual Ni, Nb and B components. X-ray investigation showed the formation of Ni (Nb, B) solid solution and amorphous phase at the intermediate stage of milling. Metastable phases formed by MA turned into Ni (Nb), Ni21Nb2B6 and Ni3Nb stable phases during heating up to 720 °C. The exothermal effects on DSC curves were caused with these processes. The disintegration of Ni (Nb, B) solid solution and crystallization of an amorphous phase resulted in the stable phases formation during the milling prolongation as well as after thermal treatment.  相似文献   

3.
The effects of Fe content on the microstructure, phase constituents and microhardness of the as-cast, 800 °C- or 1000 °C-annealed Al7Cr20FexNi73?x (x=13?66) alloys were investigated. Not all these alloys are composed of the single FCC phase. The BCC and B2 phases are found. It is confirmed that the BCC phase in the Al7Cr20Fe66Ni7 alloy is transformed from the FCC phase at about 900 °C during cooling. While in the 800 °C-annealed Al7Cr20Fe60Ni13 alloy, the FCC phase is stable and the hardness decreases. After annealing at 1000 °C, for the precipitation of the B2 particles, the Al content in the FCC phase decreases, which results in decreasing of the alloy hardness. Moreover, after annealing at 800 °C, a small amount of Al-rich B2 particles precipitate at the phase boundary and some nanocrystal BCC phase precipitates in the FCC matrix, which increases the hardness of the Al7Cr20FexNi73?x (x=41?49) alloys. These results will help to the composition design and processing design of the Al?Cr?Fe?Ni based high-entropy alloys.  相似文献   

4.
《Acta Materialia》2002,50(10):2747-2760
The microstructural evolution of multicomponent Fe70-x-yCoxNiyZr10B20 (x = 0, 7, 21; y = 7, 14, 21, 28) alloys during mechanical alloying (MA) has been studied using XRD, SEM and TEM. Mixtures of elemental and pre-alloyed powders have been transformed initially into the single supersaturated bcc α-Fe solid solution phase for the alloys investigated. Subsequently, an amorphous phase has been obtained in Co-free alloys and Co-containing alloys with high Ni/Co ratios of 1 and 3. However, no amorphous phase was detected in another Co-containing alloy with a lower Ni/Co ratio (e.g. 0.33). The thermal stability of the as-milled powders has been investigated by a combination of DSC and the Pendulum magnetometer experiments. The DSC studies provide information on the thermodynamics and kinetics of crystallization of amorphous structure as a function of alloying contents. The Pendulum magnetometer studies reveal the phase transformation from nanocrystalline bcc α-Fe solid solution to amorphous structure during MA and the thermomagnetization behavior of the as-milled powder.  相似文献   

5.
The method for the mechanical alloying of Ni-Al-C and Ni3Al-C mixtures was used to obtain nonequilibrium solid Ni(Al,C) solutions in which the carbon content varies from 2.9 to 8.5 at %. The relationship between carbon dissolution and the probability of appearance of deformation-induced stacking faults (SFs) in the formation of mixed (substitutional and interstitial) solid Ni(Al,C) solutions has been found based on an analysis of the diffraction spectra. SFs are assumed to serve as pathways of carbon penetration in nickel-based solid solutions. The effective carbon radius was found to be about 0.0616 nm in the formation of an antiperovskite phase Ni3AlC x . The method of calculating the amount of interstitial carbon was proposed based on the experimental lattice parameters of fcc solid Ni(Al,C) solutions and ordered phases L12 Ni3Al and E21 (Ni3AlC x ). The temperature stability of the nonequilibrium solid Ni(Al,C) solutions was established. It was shown that the decomposition of the solid solutions proceeded according to a spinodal mechanism at a temperature of 400°C with separation into two phases, i.e., an antiperovskite carbide (Ni3AlC x ) and Ni(Al,C). At higher temperatures (600?C800°C), carbon precipitates from these phases with the formation of an antiperovskite Ni3AlC0.16, solid Ni(Al) solution, and nanocrystalline graphite.  相似文献   

6.
Mechanochemical synthesis (MS) of Ni70Al25Mo5 (composition 1) and Ni75Al20Mo5 (composition 2) mixtures, in which 5 at % Mo substitutes for the equal amount of Ni or Al, leads to the formation of Ni-based nanocrystalline (coherent domains are ~7–12 nm in size) solid solutions; in this case, some amount of molybdenum remains free. A comparison of the lattice parameters of solid solutions, which were determined experimentally, with the magnitudes determined theoretically using Vegard law and Bozollo-Ferrante simulation, which takes into account volume modules of elasticity of elements, showed an increase in interactions between atoms composed the solid solution and the formation of regions characterized by short-range order. The heating of mechanically synthesized three-component Ni(Al, Mo) solid solutions to 720°C in a calorimeter chamber forms the ordered γ′ phase (L12) at T ~ 450°C. An analysis of the ratio of relative intensities of superlattice and fundamental reflections showed that, whatever the composition of initial mixture, Mo atoms always occupy positions in the Al sublattice. This arrangement of Mo atoms was confirmed by calculations of coefficients of concentrational variations of the lattice parameters. When molybdenum is added to Ni3 Al, Mo atoms, rather than Ni atoms, complete the Al sublattice. In this case, vacancies compensate for the lack of atoms in the Ni sublattice.  相似文献   

7.
《Acta Materialia》2003,51(6):1621-1631
Melt-spun ribbons and copper-mold cast cylinders of (Ti0.5Cu0.23Ni0.2Sn0.07)100−xMox bulk glass-forming alloys are prepared. Both Ti50Cu23Ni20Sn7 and (Ti0.5Cu0.23Ni0.2Sn0.07)95Mo5 melt-spun glassy ribbons exhibit large supercooled liquid regions, high reduced glass transition temperatures, and good thermal stabilities. During continuous heating of the melt-spun ribbons, both alloys present a two-stage crystallization behavior. Mo slightly lowers the glass-forming ability but significantly decreases the temperature of the second stage crystallization. For both alloys, the stable phases after heating are Ti2Ni, TiCu, Ti3Sn and β-(Cu,Sn). As-cast Ti50Cu23Ni20Sn7 cylinders contain dendritic hcp-Ti solid solution precipitates, as well as interdendritic glassy and Sn-rich crystalline phases. The ultimate compression stress reaches 2114 MPa with 5.5% plastic strain for 2-mm diameter cylinders. Yielding occurs at 1300 MPa, and Young’s modulus is 85.3 GPa. Mo improves and stabilizes the precipitation of a β-Ti solid solution but prevents glass formation in as-cast (Ti0.5Cu0.23Ni0.2Sn0.07)95Mo5 bulk alloys. The bulk samples contain dendritic β-Ti solid solution precipitates, Ti2Ni particles and Sn-rich phases. The ultimate compression stress is 2246 MPa with about 1% plastic strain for a 3-mm diameter cylinder. σ0.2 is about 1920 MPa and Young’s modulus is 104 GPa. The high strength is attributed to both Mo solution strengthening and Ti2Ni particle strengthening. The limited ductility is induced by the precipitation of brittle Ti2Ni particles.  相似文献   

8.
Ternary Fe86NixMn14−x alloys, where x = 0, 2, 4, 6, 8, 10, 12, 14, 16 at.%, were prepared by the mechanical alloying (MA) of elemental powders in a high-energy planetary ball mill. X-ray diffraction analysis and Mössbauer spectroscopy were used to investigate the structure and phase composition of samples. Thermo-magnetic measurements were used to study the phase transformation temperatures. The MA results in the formation of bcc α-Fe and fcc γ-Fe based solid solutions, the hcp phase was not observed after MA. As-milled alloys were annealed with further cooling to ambient or liquid nitrogen temperatures. A significant decrease in martensitic points for the MA alloys was observed that was attributed to the nanocrystalline structure formation.  相似文献   

9.
The microstructures and mechanical properties of 66(NixAl)-28Cr-6Mo (x?=?1.0, 1.5, 2.0, 2.5, 3.0, and 3.5) alloys were investigated using scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscope, microhardness, and compression tests. The microstructure of NiAl-28Cr-6Mo (Ni1.0) eutectic alloy consists of NiAl and Cr(Mo) phases. With increasing the Ni content to 2.0, the microstructure changes from eutectic (Ni1.0) to eutectic?+?primary NiAl dendrite (Ni1.5 and Ni2.0), and the morphologies of part of precipitates in primary NiAl dendrite evolve from granular to needle-like. When the Ni content increases further, besides eutectic and primary NiAl dendrite, the gray phase forms and is identified as an ordered FCC (L12) (Ni,Cr)3(Al,Mo) phase. Moreover, the more needle-like precipitates emerge in the primary NiAl dendrite of Ni2.5, Ni3.0, and Ni3.5 alloys, and the precipitate is identified as a bcc Cr(Mo) phase. The deep etching reveals that the three-dimensional morphology of Cr(Mo) precipitate is not needle-like but lath-like. Among the investigated alloys, both Ni2.0 and Ni2.5 alloys possess the higher fracture strength and microhardness. The relevant strengthening mechanisms are discussed.  相似文献   

10.
《Intermetallics》2006,14(1):24-32
The microstructure and oxidation behavior of sintered Nb–Mo–Si–B alloys were investigated for the phase assemblies T1 (Mo5Si3Bx)–MoSi2–MoB, T1–T2 (Mo5SiB2)–Mo3Si, and Mo–T2–Mo3Si in the Mo–Si–B system. In the Nb–Si–B system, T2 (Nb5(Si,B)3) and D88 (Nb5Si3Bx) were investigated, while in the quaternary Nb–Mo–Si–B system, T1–T2–D88 was investigated. Alloys were oxidized at 1000 °C in flowing air. For Mo–Si–B compositions, the alloys showed excellent oxidation stability and initial mass loss of the alloy varied according to its Mo content. Minor quantities of MoO2 were observed in the Mo–Si–B scales. The oxidation rates of Nb–Si–B and Nb–Mo–Si–B alloys were much larger than that of Mo–Si–B alloys. Their overall mass gains were significantly dependent on the initial heating atmosphere. In the Nb–Si–B system, T2 and D88 alloys were more resistant to oxidation when heated to the test temperature in high purity argon. The quaternary Nb–Mo–Si–B alloy containing less D88 phase showed lower mass gains than that containing more D88 phase. Scales of the order of 10–50 μm thick were observed on Mo–Si–B alloys while much thicker scales, of the order of 200–600 μm, were observed on Nb–Si–B and Nb–Mo–Si–B alloys. Initial heating in argon resulted in denser scales and reduced the oxidation rate of Nb–Mo–Si–B alloys.  相似文献   

11.
The crystal structures of constitutional phases in two different tungsten heavy alloys processed via different conditions were examined. The compositions of these two alloys were W–11.9Mo–17.0Ni–7.7Fe and W–29.6Mo–17.0Ni–7.7Fe (at.%), which were liquid phase sintered at 1500 °C for 5 or 240 min, and followed by either furnace-cooling or water-quenching. Increase in isothermal hold caused increased concentration of Mo but decreased concentration of W in the matrix phase, which did not affect the lattice parameter of the matrix phase to a significant extent. Quenching the specimen in water caused increase in the concentrations of both W and Mo in the matrix phase, and, consequently, increases in the lattice parameter of the matrix phase. A tungsten heavy alloy with a high alloying concentration of Mo was prone to induce the precipitation of an intermetallic phase during cooling, which was enhanced by increasing the isothermal hold at the liquid phase sintering temperature and decreasing the cooling rate. The structure of this intermetallic phase is analogous to that of MoNi, and can be designated as (WxMo1−x)(FeyNi1−y). The composition of this intermetallic phase varied with the composition of the alloy and its cooling rate subsequent to sintering. For a furnace-cooling condition, the atomic ratio of W to Mo (x/1−x) in this intermetallic phase was about 0.47 times the atomic ratio of W to Mo of the original alloy composition. Such a proportional constant decreased to about 0.30 when the specimen was water-quenched.  相似文献   

12.
The isothermal section of the Mo-Ni-Zr system at 900 °C was investigated by characterization of eighteen equilibrium alloys. Electron probe microanalysis (EPMA) and x-ray diffraction (XRD) were used to identify the phases and obtain their compositions. The existence of two ternary compounds, Zr65Mo18?x Ni16.5+x 1, cF96-Ti2Ni) and Zr65Mo27.3Ni7.72, hP28-Hf9Mo4B), was confirmed in the Zr-rich corner, and the compositions of the two phases were determined. The isothermal section of the Mo-Ni-Zr system at 900 °C consists of 15 three-phase regions and 29 two-phase regions. The following three-phase equilibria were well established: (1) (Ni) + Ni7Zr2 + Ni5Zr, (2) MoNi + MoNi3 + Ni7Zr2, (3) Ni7Zr2 + MoNi + (Mo), (4) (Mo) + Ni7Zr2 + Ni3Zr, (5) (Mo) + Ni3Zr + Ni21Zr8, (6) (Mo) + Ni21Zr8 + Ni10Zr7, (7) (Mo) + Ni10Zr7 + NiZr, (8) (Mo) + Mo2Zr + NiZr, (9) NiZr2 + Mo2Zr + τ1, (10) τ1 + Mo2Zr + τ2, (11) τ2 + Mo2Zr + (Zr)ht, (12) NiZr2 + τ1 + (Zr)ht and (13) τ1 + τ2 + (Zr)ht. Several binary phases, such as MoNi3, Ni7Zr2 and Mo2Zr, dissolve appreciable amount of the third component.  相似文献   

13.
Abstract

The influence of Gd and B on the solidification behaviour and weldability of Ni–Cr–Mo alloy UNS N06455 has been investigated by Varestraint testing, differential thermal analysis and microstructural characterisation. These alloys are currently being developed as structural materials for nuclear criticality control in applications requiring transportation and disposition of spent nuclear fuel owned by the US Department of Energy. The Gd containing alloys were observed to solidify in a manner similar to a binary eutectic system. Solidification initiated with a primary L→y reaction and terminated at ~1258°C with a eutectic type L→y+Ni5Gd reaction. The solidification cracking susceptibility of the Gd containing alloys reached a maximum at ~1 wt-%Gd and decreased with both higher and lower Gd additions. Low cracking susceptibility at Gd concentrations below ~1 wt-% was attributed to a relatively small amount of terminal liquid that existed over much of the crack susceptible solid+liquid zone. Low cracking susceptibility at Gd concentrations above ~1 wt-% was attributed to a reduced solidification temperature range and backfilling of solidification cracks. The addition of B above the 230 ppm level leads to the formation of an additional eutectic type reaction at ~1200°C and the secondary phase within the eutectic type constituent was tentatively identified as Mo3B2. The B containing alloys exhibited a three step solidification reaction sequence consisting of primary L→y solidification, followed by the eutectic type L→y+Ni5Gd reaction, followed by the terminal eutectic type L→y+Mo3B2 reaction. Boron additions had a strong, deleterious influence on solidification cracking susceptibility. The high cracking susceptibility was attributed to extension of the crack susceptible solid+liquid zone induced by the additional eutectic type L→y+Mo3B2 reaction and extensive wetting of the grain boundaries by the solute rich liquid. Simple heat flow equations were combined with solidification theory to develop a relation between the fraction liquid f L and distance x within the solid+liquid zone. Information on the phenomenology of crack formation in the Varestraint test were coupled with the calculated f Lx curves and were shown to provide useful insight into composition–solidification–weldability relations.  相似文献   

14.
Solidus temperatures of the B2 NiAl phase have been determined by high-temperature differential thermal analysis for binary melt compositions NixAl100?x (45<x<57) and for ternary alloys FeyNi50?yAl50 (0≤y≤50). It was shown that the melting temperature of the stoichiometric Ni50Al50 phase is 1681 °C, which is 43 K higher than some literature data. The solidus line at the Ni-rich side of the Ni-Al phase diagram exhibits a steeper slope than that reported previously. Substituting Fe for Ni, the decrease of solidus temperature along the isoplethal section with 50 at.% Al of the ternary Ni-Fe-Al phase diagram exhibits a steep initial slope of ?13 K/at.% Fe for small Fe-fractions, which changes into a nearly linear decrease with an average slope of ?8.5 K/at.% Fe.  相似文献   

15.
The microstructure of mechanically alloyed Mo–Si–B materials of different compositions has been studied by X-ray diffraction and FIB-tomography. Three different phases were found in all alloys: α-Mo solid solution, T2-phase (Mo5SiB2-type) and A15-phase (Mo3Si). The Mo–6Si–5B and Mo–9Si–8B (at%) alloys reveal a continuous morphology of the α-Mo phase. In Mo–9Si–8B the α-Mo phase is distributed more homogeneously compared to the Mo–6Si–5B alloy. In contrast, Mo–13Si–12B does not possess a continuous α-Mo phase. The consequences for the mechanical properties and oxidation resistance are discussed.  相似文献   

16.
Nanocrystalline materials are claimed to exhibit improved properties as a result of their novel microstructure. The corrosion behavior of nanocrystalline (Ni70Mo30)90B10 alloys prepared by crystallization from the amorphous state was studied and compared with that of their amorphous and coarse-grained counterparts. Special emphasis was given to the relationship between microstructure and corrosion resistance. It was concluded that nanocrystalline (Ni70Mo30)90B10 alloys are less sensitive to corrosion in alkaline solutions than the coarse-grained material. This behavior was related to their small grain size and homogeneous single phase microstructure. They provide a uniform substrate where it is easy to form a passive film, consisting essentially of Ni(OH)2 for the alloy studied.  相似文献   

17.
Amorphous steels are promising materials with potential structural applications. The glass-forming ability (GFA) and mechanical properties of metallic glasses are intimately related to the local structure. In Fe-based alloys, Cr and Mo content seem to play a key role in stabilizing the amorphous atomic-level structure. Here we present a study on the effects of changing Mo content in Fe72?xC7Si3.3B5.5P8.7Cr2.3Al2Mox amorphous steels. We study the local structure of these alloys by Synchrotron X-ray diffraction and Mössbauer spectroscopy. The results show how the amorphous phase evolves from a ferromagnetic Fe-rich structure to a structure with predominance of paramagnetic environments with the increase of Mo content. The changes in the distribution of magnetic environments cannot be attributed only to the Fe–Mo substitution but to a change of local configuration in the amorphous phase.  相似文献   

18.
以(Fe0.25Co0.25Ni0.25Cr0.125Mn0.125)100-xBx (x=8-16, at.%)合金为研究对象,采用真空电弧熔炼、真空水冷铜模吸铸和真空熔融甩带的方法制备出该系列合金的铸锭、细棒和带材。研究不同B含量对Fe0.25Co0.25Ni0.25Cr0.125Mn0.125高熵合金在不同铸造工艺条件下的相组成、显微组织演变和力学性能变化。结果表明通过控制B含量和冷却速率,能够实现该体系高熵合金从fcc结构向非晶结构转变,制备出伪高熵合金。并且在相同的铸造工艺下,B含量的增加能细化晶粒,从而使得合金的强度和硬度随B含量增加而增大。  相似文献   

19.
The changes in the structure, phase composition, and physicomechanical properties of titanium-free maraging alloys based on the Fe-15–23% Ni-(Co, Mo, V) system after heating to the single-phase α field and two-phase α + γ field have been studied. It has been established that the strengthening of N15K10M5F5-type maraging alloys is caused by the precipitation of fine particles (20–50 nm) of intermetallic phases such as the fcc Ni3(Mo, V) phase and the Fe2(Mo, V) Laves phase (in the N23K9M6 alloys, with the formation of the Ni3Mo and Fe2Mo phases). It has been shown that the two-step aging of the N15K10M5F5 alloy leads to an additional strengthening by 200–250 MPa and provides the achievement of the ultimate tensile strength σu=2400?2500 MPa. The high-strength N15K10M5F5 maraging alloys are obtained with two levels of the coercive force H c: (a) semihard maraging alloys with H c=20?50 Oe and σu=2100?2400 MPa; and (b) hard magnetic maraging alloys with H c=180?230 Oe and σu=1500?1800 MPa. The high-strength titanium-free N15K10M5F5 and N23K9M6 maraging alloys possess many properties characteristic of structural, elastic, and magnetic alloys and are thus multifunctional materials. These alloys can be used for advanced high-tech articles and as high-strength magnetic materials.  相似文献   

20.
Multicomponent Fe68−xNixZr15Nb5B12 (x = 5, 10, 15, 20) alloy powders milled for 60 h were prepared by mechanical alloying (MA). The structure and crystallization behavior were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analysis (DTA). Ni enhances the amorphisation of alloy powders. Particle size increases with increasing Ni content. Both onset crystallization temperature Tx and the first crystallization peak temperature Tp of the four alloys shift to a higher temperature with increasing heating rate while melting temperature (Tm) is just the opposite. Fe68−xNixZr15Nb5B12 (x = 5, 10, 15, 20) alloys all have a large supercooled liquid region ΔTx. The supercooled liquid region ΔTx increases and the crystallization activation energy E decreases with increasing Ni content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号