首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The surface modification of three starch based polymeric biomaterials, using a KMnO4/NHO3 oxidizing system, and the effect of that modification on the osteoblastic cell adhesion has been investigated. The rationale of this work is as follows—starch based polymers have been proposed for use as tissue engineering scaffolds in several publications. It is known that in biodegradable systems it is quite difficult to have both cell adhesion and proliferation. Starch based polymers have shown to perform better than poly-lactic acid based materials but there is still room for improvement. This particular work is aimed at enhancing cell adhesion and proliferation on the surface of several starch based polymer blends that are being proposed as tissue engineering scaffolds.The surface of the polymeric biomaterials was chemically modified using a KMnO4/HNO3 system. This treatment resulted in more hydrophilic surfaces, which was confirmed by contact angle measurements. The effect of the treatment on the bioactivity of the surface modified biomaterials was also studied. The bioactivity tests, performed in simulated body fluid after biomimetic coating, showed that a dense film of calcium phosphate was formed after 30 days. Finally, human osteoblast-like cells were cultured on unmodified (control) and modified materials in order to observe the effect of the presence of higher numbers of polar groups on the adhesion and proliferation of those cells. Two of the modified polymers presented changes in the adhesion behavior and a significant increase in the proliferation rate kinetics when compared to the unmodified controls.  相似文献   

3.
冯波  翁杰  屈树新 《功能材料》2004,35(Z1):2321-2324
评述了近年对骨植入材料进行表面生物化改性的研究进展.第一部分是简要的概述.第二部分涉及通过物理吸附或化学作用使黏附性蛋白、生物活性肽、生长因子和某些生物分子等结合到骨生物材料表面,以及这些蛋白质与钙磷共同结合到材料表面.第三部分综述了自组装单层(SAMs)和微模型化(Micropattern)技术在骨生物材料表面改性方面的研究现状.  相似文献   

4.
The purpose of this study was to investigate the effect of fiber orientation of a fiber-reinforced composite (FRC) made of poly-methyl-methacrylate (PMMA) and E-glass to the surface fabrication process by solvent dissolution. Intention of the dissolution process was to expose the fibers and create a macroporous surface onto the FRC to enhance bone bonding of the material. The effect of dissolution and fiber direction to the bone bonding capability of the FRC material was also tested. Three groups of FRC specimens (n = 18/group) were made of PMMA and E-glass fiber reinforcement: (a) group with continuous fibers parallel to the surface of the specimen, (b) continuous fibers oriented perpendicularly to the surface, (c) randomly oriented short (discontinuous) fibers. Fourth specimen group (n = 18) made of plain PMMA served as controls. The specimens were subjected to a solvent treatment by tetrahydrofuran (THF) of either 5, 15 or 30 min of time (n = 6/time point), and the advancement of the dissolution (front) was measured. The solvent treatment also exposed the fibers and created a surface roughness on to the specimens. The solvent treated specimens were embedded into plaster of Paris to simulate bone bonding by mechanical locking and a pull-out test was undertaken to determine the strength of the attachment. All the FRC specimens dissolved as function of time, as the control group showed no marked dissolution during the study period. The specimens with fibers along the direction of long axis of specimen began to dissolve significantly faster than specimens in other groups, but the test specimens with randomly oriented short fibers showed the greatest depth of dissolution after 30 min. The pull-out test showed that the PMMA specimens with fibers were retained better by the plaster of Paris than specimens without fibers. However, direction of the fibers considerably influenced the force of attachment. The fiber reinforcement increases significantly the dissolution speed, and the orientation of the glass fibers has great effect on the dissolving depth of the polymer matrix of the composite, and thus on the exposure of fibers. The glass fibers exposed by the solvent treatment enhanced effectively the attachment of the specimen to the bone modeling material.  相似文献   

5.
Three different compositions of butene–ethylene copolymer composites reinforced by polyethylene fibers and produced by filament winding are potentially suitable for biomedical applications. This study examines the effect of various processing and finishing conditions and of sterilization on the extent and composition of surface oxidation. An XPS analysis revealed only insignificant differences between the various treatments, while fibroblast cell attachment tests indicated good attachment with no signs of cytotoxity or cell degeneration for any of the materials.  相似文献   

6.
《中国粉体技术》2017,(1):14-18
为降低硅灰石颗粒表面的亲水性,改善其在有机介质中的分散性和界面结合作用,采用硬脂酸钠为改性剂对硅灰石进行表面改性,对改性工艺各影响因素进行试验考查,对改性后硅灰石表面润湿性和在有机介质中的分散性进行表征。结果表明:硅灰石经硬脂酸钠改性后,在水中的润湿接触角由改性前的10.83°增大为69.33°,表面自由能由102.17 m J/m~2减小至41.78 m J/m~2,改性硅灰石在煤油中的分散性显著提高,通过热力学分析解释改性前后硅灰石颗粒分散性变化的趋势。  相似文献   

7.
The aim of the present work was to design a bio-interactive implant surface by coating recombinant human dentin matrix protein 1 (hDMP1) onto titanium and to investigate the biological function of this material. Firstly, the plasmid containing the hDMP1 cDNA was constructed and hDMP1 was expressed, purified and characterized. Then, hDMP1 was coated onto the surface of Ti substrates via a biochemical technique and the procedure was divided into three steps: in the beginning, titanium was treated by regular polishing and denoted as Cp-Ti; then, Cp-Ti received alkaline and water treatment and was nominated as AW-Ti; finally, AW-Ti was coated with hDMP1 and referred to as hDMP1-Ti. The inserts of hDMP1 genes were detected by enzyme digestion as well as gel electrophoresis, and the complete nucleotide sequence of hDMP1 was tested. The purified recombinant hDMP1 was electrophoresed on a 10?% SDS-PAGE gel. Cp-Ti, AW-Ti and hDMP1-Ti were characterized by X-ray photoelectron spectroscope and water contact angles tests. The biological activity of MG63 cells cultured in the three groups was investigated by the cell attachment, proliferation and alkaline phosphatase activity assays. The results show that hDMP1 was successfully constructed and coated onto the titanium surface, and hDMP1-Ti had higher hydrophilicity than Cp-Ti. Compared with Cp-Ti and AW-Ti, hDMP1-Ti showed better in vitro bioactivity.  相似文献   

8.
空心微珠表面改性及其吸波特性   总被引:35,自引:0,他引:35  
采用化学镀的方法对空心微珠表面金属化改性进行研究,并利用扫描电镜及能谱分析仪对表面镀镍后的形貌进行观察、测定,结果表明镍较均匀附着在微珠的表面。分别将改性前后的微珠制备成吸波材料,测试其吸波性能。测试结果表明,改性后的空心微珠具有较好的吸波性能,在8-18GHz扫频测试范围内,小于-10dB的频段范围在16.6-18GHz,最大吸收可达-13.57dB,对应的频率为17.2GHz。空工心微珠表面改性为其再利用找到有效的途径。  相似文献   

9.
《Composites Part A》2007,38(8):1893-1901
The surface of wood flour used as reinforcement in PP/wood composites was successfully modified by benzylation in NaOH solution of 20 wt% concentration at 105 °C. The time of the reaction was changed between 5 and 360 min in several steps. The progress of modification was followed by the measurement of weight increase and by diffuse reflectance infrared spectroscopy (DRIFT). The structure of the wood was characterized by X-ray diffraction (XRD) and its surface tension was determined by inverse gas chromatography (IGC). PP composites containing 20 wt% filler were prepared from a PP block copolymer and the modified wood flour. The mechanical behavior of the composites was characterized by tensile testing. The majority of the active hydroxyl groups at the surface were replaced by benzyl groups in about 2 h under the conditions used. Further increase in reaction time did not influence the properties of the filler. Both the structure of the wood flour and its surface tension changed as an effect of modification. The reduction of surface tension led to significant changes in all interactions between the wood flour and other substances resulting in a considerable decrease of water absorption, which is the major benefit of this modification. All measured mechanical properties of the composites decreased slightly with increasing degree of modification. A detailed analysis of the results proved that the dominating micromechanical deformation process of these PP/wood composites is debonding, which is further facilitated by the decrease in the surface tension of the filler. Chemical modification of wood flour slightly improved processability and the surface appearance of the composites prepared with them and considerably decreased the water absorption of these latter.  相似文献   

10.
以原位乳液聚合方法合成水性聚氨酯预聚体(WPUP)包覆纳米ZnO粒子(ZnO@WPUP),将KOH预处理后的芳纶纤维浸渍在改性ZnO乳液中进行二次处理,进一步与天然橡胶硫化,得到ZnO@WPUP改性芳纶/橡胶复合材料,并通过FTIR、SEM和H抽出实验等测试分析ZnO@WPUP对芳纶/橡胶复合材料黏合性能的影响。结果表明:WPUP能有效提高ZnO分散性,随着WPUP含量增加,ZnO@WPUP在芳纶纤维表面分散更加均匀,纤维表面粗糙度增大,改善了芳纶纤维表面橡胶的黏附量,从而大幅度提高芳纶/橡胶复合材料的黏结强度。  相似文献   

11.
We have studied the effect of surface modification with aluminum hydroxide and alumina-boehmite mixtures on the electrochemical performance of an equimolar LiCoO2/LiMn2O4 composite cathode material. A process has been developed for the deposition of aluminum hydroxide nanocoatings using ultrasonic processing. Al(OH)3 nanocoatings, as well as alumina-boehmite nanocoatings, considerably improve the cyclability of the composite in an extended voltage range (up to 4.5 V) in comparison with the unmodified material, with an insignificant reduction in specific capacity in the first cycles. Both types of coatings markedly improve the cyclability of the composite at high current rates in comparison with the unmodified composite.  相似文献   

12.
Stem cell-based therapy has recently emerged for use in novel therapeutics for incurable diseases. For successful recovery from neurologic diseases, the most pivotal factor is differentiation and directed neuronal cell growth. In this study, we fabricated three different widths of a micro-pattern on polydimethylsiloxane (PDMS; 1, 2, and 4 microm). Surface modification of the PDMS was investigated for its capacity to manage proliferation and differentiation of neural-like cells from umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs). Among the micro-patterned PDMS fabrications, the 1 microm-patterned PDMS significantly increased cell proliferation and most of the cells differentiated into neuronal cells. In addition, the 1 microm-patterned PDMS induced an increase in cytosolic calcium, while the differentiated cells on the flat and 4 microm-patterned PDMS had no response. PDMS with a 1 microm pattern was also aligned to direct orientation within 10 degrees angles. Taken together, micro-patterned PDMS supported UCB-MSC proliferation and induced neural like-cell differentiation. Our data suggest that micro-patterned PDMS might be a guiding method for stem cell therapy that would improve its therapeutic action in neurological diseases.  相似文献   

13.
超滤膜的改性研究及应用   总被引:14,自引:0,他引:14  
陆晓峰  卞晓锴 《膜科学与技术》2003,23(4):97-102,115
随着超滤膜技术的发展,人们对超滤膜提出了各种各样的特性要求,其中解决膜表面的污染问题变得越来越紧迫.超滤膜改性,尤其是在膜表面引入亲水性基团是解决问题的关键.本文从这点出发,结合自身的工作,总结了近年高分子超滤膜改性方面的研究进展,包括表面活性剂在膜表面的吸附改性、等离子体改性、辐照改性、高分子合金和表面化学反应等几种改性方法.  相似文献   

14.
炭黑的表面修饰及其对炭黑/硅橡胶导热性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
通过采用羟基硅油对炭黑表面修饰, 改善炭黑与硅橡胶之间的相容性, 从而减小炭黑与硅橡胶界面热阻, 制备了高导热系数炭黑填充硅橡胶, 研究了炭黑填料与硅橡胶的相容性及炭黑/硅橡胶的导热系数。结果表明: 与原炭黑/硅橡胶体系相比, 经过羟基硅油修饰的炭黑与硅橡胶的相容性得到明显改善。当经表面修饰炭黑的质量分数为36.59%时, 表面修饰炭黑/硅橡胶的导热系数可达到0.591 W·(m·K)-1, 较同含量未修饰炭黑/硅橡胶的导热系数高38.7%。  相似文献   

15.
In the present study, the effect of hydrofluoric acid (HF) treatment on the surface composition and corrosion behaviour of the magnesium alloy AZ 31 was investigated. The HF treatment of the samples was performed with various concentrations and at different treatment times. The samples surfaces were analysed by Fourier transform infrared spectroscopy, optical emission spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscopy. The results showed the formation of hydroxides, oxides and compounds of the general formula Mg(OH)xF2 − x on the samples surfaces, as well as variations on impurities concentrations. The process led to distinct surfaces, each having its specific corrosion resistance, which was evaluated by electrochemical impedance spectroscopy and potentio-dynamic polarization. The most improved corrosion protection was achieved using the concentrations of 14 and 20 mol L− 1 and 24 h of treatment time, resulting in corrosion rates 20 times lower than those of untreated samples. These two solutions also resulted in an improved corrosion protection for further polymeric coatings, showing that this treatment is an excellent pre-treatment for corrosion protective layers on magnesium alloys.  相似文献   

16.
模板效应及其在材料制备中的应用   总被引:2,自引:0,他引:2  
本文对模板效应进行了介绍 ,并综述了其在制备环状化合物、纳米材料、介孔材料等诸多方面的应用 ,并指出了模板效应在材料制备领域的发展方向  相似文献   

17.
Biocorrodible iron foams were coated with different calcium phosphate phases (CPP) to obtain a bioactive surface and controlled degradation. Further adhesion, proliferation and differentiation of SaOs-2 and human mesenchymal stem cells were investigated under both static and dynamic culture conditions. Hydroxyapatite (HA; [Ca10(PO4)6OH2]) coated foams released 500 μg/g iron per day for Dulbecco's modified eagle medium (DMEM) and 250 μg/g iron per day for McCoys, the unmodified reference 1000 μg/g iron per day for DMEM and 500 μg/g iron per day for McCoys, while no corrosion could be detected on brushite (CaHPO4) coated foams. Using a perfusion culture system with conditions closer to the in vivo situation, cells proliferated and differentiated on iron foams coated with either brushite or HA while in static cell culture cells could proliferate only on Fe-brushite. We conclude that the degradation behaviour of biocorrodible iron foams can be varied by different calcium phosphate coatings, offering opportunities for design of novel bone implants. Further studies will focus on the influence of different modifications of iron foams on the expression of oxidative stress enzymes. Additional information about in vivo reactions and remodelling behaviour are expected from testing in implantation studies.  相似文献   

18.
Biocompatibility of a material relates, among other factors, to the absence of adverse cellular reactions and modulation of cell interaction and subsequent responses. The assessment of biomaterial compatibility relies on the macroscopic and physiologic cellular responses to material interaction which basically includes two phenomena: (a) cell attachment, which is mainly governed by physico-chemical properties of the interacting surfaces, and (b) cell adhesion, which is, in turn, dictated by molecular properties of both surfaces and also the interaction medium. The aim of this study is to present evidences that attachment and adhesion represent two different types of osteoblast cell responses to fibronectin-coated or uncoated glass surfaces.  相似文献   

19.
20.
Dielectric barrier discharges have been used to deposit fluorocarbon (FC) films on various materials, such as paper, glass, and silicon substrates. The primary monomers used for plasma polymerization were difluoromethane (CH2F2), octafluoropropane (C3F8), and octafluorocyclobutane (C4F8). FC films were characterized using Fourier transform infrared spectroscopy, atomic force microscopy, static contact angle measurements, and scanning electron microscopy. Surface and structural properties of deposited films are strongly dependent on the plasma compositions and plasma parameters. FC films deposited on paper are to enhance its barrier properties and to achieve hydrophobic surfaces. Contact angle studies reveal that a minimum FC film thickness of about 200 nm on paper is required to completely cover surface and near-surface fibers, thereby providing the paper with long term hydrophobic character. In the C3F8 and C4F8 systems, the contact angles of the deposited films do not change appreciably with plasma parameters and are strongly dependent on the substrate roughness. Hydrogenated FC films deposited with CH2F2 plasmas show the relatively low contact angles due to the existence of CHX (x = 1-3) groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号