共查询到14条相似文献,搜索用时 140 毫秒
1.
为了探讨温度和应变率对NiTi记忆合金相变转换率的影响,本文利用准静态试验机和分离式Hopkinson压杆的恒应变率技术对板条状和圆柱状试样进行了不同应变率的试验,同时通过改变温度检查相变转换的速度,结果表明:在较低的10-2/s应变率下,NiTi记忆合金伪弹性变形过程自身就会有6.5℃温升,这意味着在高应变率下其性能是温度与率的耦合效应;随外界环境温度的增加,NiTi记忆合金的相变恢复速率由递增趋于一稳态值,当温度超过365K时,恢复速率趋缓至约0.014mm/s;随应变率增加,相变转换率会趋于极限,即应力诱发的奥氏体向马氏体相转化阶段在应变率超过6000/s时基本不变,表明更高的应变率已不能引起NiTi相变转换。 相似文献
2.
3.
Abstract: This paper deals with the study of fracture behaviour of silicon carbide particle‐ reinforced aluminium alloy matrix composites (A359/SiCp) using an innovative non‐destructive method based on lock‐in thermography. The heat wave, generated by the thermo‐mechanical coupling and the intrinsic energy dissipated during mechanical cyclic loading of the sample, was detected by an infrared camera. The coefficient of thermo‐elasticity allows for the transformation of the temperature profiles into stresses. A new procedure was developed to determine the crack growth rate using thermographic mapping of the material undergoing fatigue. The thermographic results on the crack growth rate of A359/SiCp composite samples with three different heat treatments were correlated with measurements obtained by the conventional compliance method. The results obtained by the two methods were found to be in agreement, demonstrating that lock‐in thermography is a powerful tool for fracture mechanics studies. The paper also investigates the effect of heat treatment processing of metal matrix composites on their fracture properties. 相似文献
4.
利用Hopkinson杆与MTS实验装置分别研究泡沫铝在不同温度下的动态与静态力学性能,实验结果表明,泡沫铝有很强的温度软化效应,坍塌应力与平台应力和“应力降”的大小均随温度的升高而降低。动态高温下应力应变曲线与静态低温下应力应变曲线类似,反映材料应变率与温度之间的等效关系。低温下泡沫金属强度较高,脆性较强,泡沫结构易脆性坍塌,并伴有脆性裂纹,随着温度的升高,基体材料逐渐软化,泡沫金属强度降低,胞孔结构在压缩过程中从低温下脆性失稳逐渐变成以胞壁屈曲与塑性变形为主,且在不同温度段,应变率敏感度不同。 相似文献
5.
为了研究轧制AZ31镁合金板材(4mm)在高应变速率下的动态力学性能和失效行为,采用分离式霍普金森压杆装置(SHPB)在室温下应变速率为500~2600s-1范围内对其进行了动态压缩实验,并利用金相显微镜(OM)和扫描电镜(SM)对冲击后的试样进行了显微分析.探讨了轧制AZ31镁合金板材沿轧制方向(RD)、横向(TD)和法向(ND)的动态压缩性能和失效行为.结果表明:轧制AZ31镁合金4mm板材动态压缩性能存在各向异性.沿RD和TD方向压缩的动态性能相同,沿ND方向压缩的动态断裂强度最大.AZ31镁合金4mm板材的动态压缩断裂机制为解理断裂.变形机制为沿RD和TD方向高速压缩时,{101-2}<112-0>拉伸孪晶参与变形;沿ND方向高速压缩时,{101-1}<112-0>压缩孪晶参与变形. 相似文献
6.
7.
8.
2219铝合金动态力学性能及其本构关系 总被引:1,自引:0,他引:1
针对2219铝合金在高温、高应变率加工条件下的变形特征以及流动应力变化规律,利用分离式Hopkinson压杆设备对该合金进行了室温以及高温动态压缩力学性能研究,并利用电子万能试验机对其进行准静态压缩力学性能测试,得到了2219铝合金在不同应变率和温度下的真实应力-应变曲线。结果表明:2219铝合金对温度有较高的敏感性,其流动应力随着温度的升高而降低;当应变率在1000~3000s-1范围内时,材料的流动应力变化并不明显;基于Johnson-Cook模型拟合出的模型参数,能较好地预测实验中材料的流动应力。 相似文献
9.
Fe-36Ni高温高应变率动态力学性能及其本构关系 总被引:1,自引:1,他引:1
为研究Fe-36Ni因瓦合金的动态力学性能及其本构关系,在20~800℃和10-3~104 s-1的应变率内,采用电子万能试验机和高温分离式霍普金森压杆分别对Fe-36Ni因瓦合金进行准静态实验和动态压缩实验,得到其高温、高应变率下的应力-应变曲线.结果表明,Fe-36Ni因瓦合金的流动应力表现出较强的应变率和温度敏感性,随着应变率的增大而增大,随着温度的升高而减小.采用改进应变率项和温度项的Johnson-Cook本构方程拟合了Fe-36Ni因瓦合金在高温、高应变率下的动态塑性本构关系,拟合结果与试验数据吻合很好. 相似文献
10.
使用分离式Hopkinson压杆(SHPB)系统,在温度293~973 K、应变率6 000~10 000 s-1下,对原位合成TiC颗粒和TiB晶须混合增强钛基复合材料(TMCs)的动态压缩性能进行了研究。试验结果表明:在373~573 K、673~773 K和873~973 K范围内TMCs流变应力随温度的增加而显著减小;在较低温度(低于373 K)和较低应变率(6 000~8 000 s-1)下,TMCs呈现小幅的应变率硬化特征,而在较高温度(573 K及以上)时各应变率下TMCs均存在应变率软化特征,且温度越高材料应变率软化效应越明显。材料失效/断裂机制分析表明:应变率软化机制主要是绝热软化及其产生的绝热剪切带(ABS)中微裂纹的形成和扩展的综合作用;在较高的应变率和较大应变下ABS中会产生微裂纹,温度较低时TMCs塑性不足以抑制或阻碍微裂纹的扩展,从而导致TMCs在宏观上迅速破坏;材料破坏时以钛合金基体塑性断裂为主,但在局部伴随部分增强相脆性断裂。 相似文献
11.
12.
K. Boboridis A. Seifter A. W. Obst D. Basak 《International Journal of Thermophysics》2007,28(2):683-696
The radiance temperature of nickel at its melting point was measured at four wavelengths (in the nominal range of 1.5 to 5 μm)
by a pulse-heating technique using a high-speed fiber-coupled four-channel infrared pyrometer. The method was based on rapid
resistive self-heating of a specimen from room temperature to its melting point in less than 1 s while simultaneously measuring
the radiance emitted by it in four spectral bands as a function of time. A plateau in the recorded radiance-versus-time traces
indicated melting of the specimen. The melting-point radiance temperature for a given specimen was determined by averaging
the temperature measured along the plateau at each wavelength. The results for several specimens were then, in turn, averaged
to yield the melting-point radiance temperature of nickel, as follows: 1316 K at 1.77 μm, 1211 K at 2.26 μm, 995 K at 3.48 μm,
and 845 K at 4.75 μm. The melting-point normal spectral emittance of nickel at these wavelengths was derived from the measured
radiance in each spectral band using the published value of the thermodynamic (true) melting temperature of nickel. 相似文献
13.
14.
变形温度和应变速率均影响β型钛合金的力学性能,且其影响均关联塑性变形过程中变形方式的变化。利用TEM,EBSD,SEM,XRD,OM和拉伸试验机研究变形温度和应变速率耦合作用对{332}〈113〉孪生诱发塑性效应Ti-15Mo合金力学性能的影响。结果表明:在298 K和573 K下,屈服强度均随应变速率的增加逐渐升高,即依赖于位错热激活过程,且573 K下显著的位错热激活作用使得屈服强度表现出更大的应变速率依赖性。不同于298 K下,Ti-15Mo合金在573 K下通过{332}〈113〉孪生和位错滑移耦合变形;构建的流变应力模型表明位错强化成为其主要强化方式。高应变速率下,塑性变形早期形成的更多孪晶虽然会抑制孪生的进一步产生降低加工硬化率,但同时有效降低位错不均匀分布引起的局部应力集中延缓颈缩的发生;两个方面的共同作用使得Ti-15Mo合金在变形温度和应变速率耦合作用下呈现出更小的应变速率依赖性。 相似文献