首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
建立了高温高压环境下双组分单液滴的一维非稳态蒸发模型.该模型可描述气/液两相质量及能量平衡、液相传热传质和相变过程.使用所建立的液滴蒸发模型,以正二十四烷(C_(24)H_(50))和正三十烷(C_(30)H_(62))作为机油的表征组分,分析了双组分机油液滴蒸发过程中液滴温度和组分摩尔分数分布的变化趋势,并对比了相同环境条件下机油与异辛烷液滴的不同蒸发特性.在此基础上,研究了环境压力、环境温度和液滴初始半径对机油液滴寿命、液滴蒸发百分数、液滴温度和组分摩尔分数等的影响.结果表明:在高温高压环境下,机油液滴能够留存较长时间,形成缸内高温早燃源的可能性较大.  相似文献   

2.
引入相平衡理论建立了DME-LPG-N2三元气、液高压相平衡,获得了液滴表面各组分的物质的量分数.建立了混合液滴超临界蒸发的计算模型,计算了二甲醚(DME)/液化石油气(LPG)双燃料液滴的蒸发过程,考察了液滴的初始直径、初始组分、环境温度和环境压力对蒸发过程的影响.结果表明:环境压力、温度越大,环境介质(N2)在液滴中的溶解越明显;液滴初始直径越小,蒸发寿命越短;液滴中DME越多,亚临界蒸发过程中的液滴蒸发寿命越长,而超临界蒸发过程中液滴蒸发寿命越短;环境温度越高,液滴蒸发寿命越短;在研究的温度范围内,环境压力越高,在亚临界条件下液滴蒸发寿命越短,而在超临界条件下液滴蒸发寿命越长.  相似文献   

3.
为了探究环境属性与燃油属性对单组分液滴蒸发特性的影响,建立了高温高压单液滴蒸发试验装置,系统研究了正庚烷、正十二烷和正十六烷单液滴在高温高压下的蒸发特性.结果表明:当环境温度超过燃油的临界温度且环境压力接近燃油的临界压力时,液滴周围就会出现"可见蒸气",且随着压力的升高,"可见蒸气"的量逐渐增多.此外,随着环境温度的升高,环境压力的升高对3种燃油液滴蒸发速率的影响由抑制转变为促进,在某一温度下,环境压力的变化对燃油液滴的蒸发速率影响很小,该环境温度接近燃油的临界温度.在当前研究的压力范围内,正庚烷、正十二烷和正十六烷燃油液滴蒸发速率的变化率均随环境温度的升高而增加,且环境压力越高,蒸发速率随环境温度的增加幅度越大.  相似文献   

4.
不同来流温度下单液滴燃烧的数值模拟   总被引:1,自引:0,他引:1  
单液滴蒸发燃烧规律是研究喷雾蒸发与燃烧这一复杂物理化学过程的基础.与传统折算薄膜理论相比,从基本控制方程出发,建立了高温对流环境中单液滴的瞬态蒸发与燃烧模型.模型中详细考虑了液相内部环流、气相边界层流动以及热物性的变化,并采用数值模拟方法分析了来流温度对油滴蒸发燃烧特性的影响.计算结果复现了实验中液滴火焰由尾部火焰向包覆火焰的发展过程,验证了直径平方定律的适用范围,并得到了来流温度对油滴蒸发燃烧特性的影响规律.  相似文献   

5.
以超临界环境中RP-3航空煤油的悬停液滴为研究对象,实验研究了其在超临界温度下的蒸发特性受液滴初始温度的影响.通过分析不同初始温度下液滴的无量纲直径的平方、瞬态蒸发常数、液滴寿命和热膨胀率等参数的变化规律后发现,较高初始温度的液滴主要通过缩短初始加热时间来提高蒸发效率,当液滴初始温度从293.8,K升高至373.1,K时,3种不同环境压力下的液滴蒸发时间分别降低了31.55%,、32.25%,和34.73%,.此外,还发现液滴的初始温度越高,其出现超临界散射光斑时的液滴直径越大,出现时间越早.  相似文献   

6.
利用开发的计算模型对壬烷液滴在氮气中的蒸发过程进行了数值计算,研究了超临界环境条件下环境压力、环境温度以及液滴初始温度对液滴蒸发特性的影响.结果表明:环境压力越高,在蒸发过程中液滴表面温度的升温速度越快;并在蒸发初期液滴直径的增大越显著,同时液滴表面发生迁移的时刻越早.环境温度越高液滴的蒸发寿命越短,液滴表面发生迁移的时刻越早,并且在蒸发初期液滴直径的增大越不明显.随着液滴初始温度的升高液滴的蒸发寿命和迁移时刻几乎均呈线性趋势逐渐减小,液滴初始温度的高低只会使液滴的蒸发过程整体上提前或延后.  相似文献   

7.
针对附壁油膜显著影响内燃机的性能和污染物排放的现象,应用解析方法,创新性地建立了一维非稳态附壁油膜加热蒸发的简化模型.模型中考虑了油膜与壁面的热传导,油膜与高温环境气体的对流换热,以及油膜自身蒸发的影响.应用该模型模拟了正十四烷在高温高压环境中的瞬态加热蒸发过程,考虑了油膜物性随温度的变化,最终得到附壁油膜温度分布的解析解.重点讨论了壁面温度以及环境压力对附壁油膜加热蒸发过程的影响.结果表明:提高壁面温度和降低环境压力可以有效促进附壁油膜蒸发.  相似文献   

8.
以单一组分液滴在静止环境中的蒸发模型为基础,建立多组分液滴蒸发的折算数学模型,并以二甲醚(DME)/液化石油气(LPG)双燃料液滴作为研究对象,对其亚临界蒸发过程进行了详细的模拟研究。获得了各组分在不同环境温度和环境压力下液滴蒸发的湿球温度,以及组分摩尔分数变化时双组分液滴湿球温度的变化情况。考察了液滴中组分的初始摩尔分数、液滴初始温度、环境温度和压力及混合规则对蒸发过程的影响,结果表明:相同环境条件下,混合物的湿球温度随DME摩尔分数的增大而升高;液滴初始质量相同时,DME初始摩尔分数越大,蒸发的时间越长;初始质量及组分初始浓度一样的多组分液滴,初始温度越接近湿球温度,蒸发时间越短;环境压力越高,液滴湿球温度越高,气体混合物扩散系数越小,液滴生存期内加热期所占的比例明显增加,蒸发时间较长;使用混合规则二,蒸发时间较长。  相似文献   

9.
采用悬滴法对普通煤油和航空煤油两种液体燃料的单液滴在高温相对静止及强迫对流环境下的蒸发规律进行了实验研究,得到70余组有效实验数据.在本文条件下,对流可促进燃料液滴的蒸发,且对流速度越大,液滴蒸发速率越大;对流环境下普通煤油和航空煤油的蒸发规律存在差异,且同等条件下普通煤油的蒸发速率大于航空煤油.传统"折膜"理论蒸发模型与实验结果相比存在一定偏差;综合相对静止及对流环境的厚交换层蒸发规律研究,提出新的规律,并用实验结果检验.  相似文献   

10.
超临界环境下燃料液滴蒸发过程的计算研究   总被引:4,自引:0,他引:4  
建立了研究燃料液滴在超临界环境下蒸发的计算模型,并对液滴的蒸发过程进行了编程计算.模型基于气液两相的守恒方程,并详细考虑了液滴表面的气液相平衡.模型采用了Peng-Robinson(PR)状态方程.计算结果表明:超临界压力下,液滴周围气体在液相中的溶解很明显.燃料液滴只有在强超临界环境中蒸发时,液滴表面才能发生由亚临界状态到超临界状态的迁移;而在弱超临界环境中蒸发时,液滴表面不会发生迁移.随着环境压力的升高,液滴寿命先是下降然后升高;而当环境温度升高时,液滴寿命不断下降.  相似文献   

11.
基于分子动力学模拟的方法,对氮气环境中单个烷烃液滴的蒸发过程进行了模拟研究,揭示了液滴在亚临界和超临界条件下液滴蒸发特性的显著差异.对正十二烷液滴在氮气环境内的蒸发过程进行分子动力学模拟,结果表明:在超临界温度和压力条件下,液滴的温度持续上升,能够超过燃油组分的临界温度;此时,液滴与周围气相区的密度差异近乎消失,气-液相交界变得难以辨别,明显不同于亚临界条件下典型的气-液两相蒸发特征;蒸发速率随环境温度的升高而增大.在较低的压力范围内,升高环境压力能够提升液滴蒸发速率,但当压力达到一个特定值后,随着环境压力的升高蒸发速率反而会降低,同时液滴转变为超临界蒸发状态所需的最小压力随环境温度的升高而降低.对于双组分混合液滴,在亚临界环境条件下,液滴内的轻质组分优先蒸发;而在超临界环境条件下,液滴内各个组分近乎保持同步蒸发,两个燃油组分共同主导液滴的完整蒸发过程.  相似文献   

12.
为了探明添加正丁醇对柴油蒸发特性的影响,采用石英丝挂滴技术研究了不同温度下正丁醇、柴油及其混合燃料的蒸发特性,并利用高速摄像技术记录了液滴蒸发过程中直径和形态的变化.研究表明:与柴油两阶段蒸发特性相比,正丁醇瞬态加热阶段较短,正丁醇比柴油蒸发快,且提高环境温度可以降低正丁醇与柴油蒸发特性的差异性.正丁醇/柴油混合燃料比柴油蒸发快,正丁醇添加主要影响柴油蒸发过程的前阶段.高温下,与柴油相比,正丁醇/柴油混合燃料的蒸发特性发生根本变化,其蒸发过程呈现三阶段蒸发特性,液滴出现气泡生成、膨胀和喷气现象,液滴直径波动剧烈,这是由于正丁醇/柴油混合燃料沸点差异性导致的.  相似文献   

13.
为有效模拟实际柴油液滴的蒸发过程,以六种组分(甲苯、正癸烷、正十二烷、正十四烷、正十六烷和正十八烷)作为柴油的替代,构建了考虑辐射效应的多组分液滴蒸发的有效扩散模型,并与柴油液滴蒸发试验进行对比.结果表明:与单组分替代物相比,该六组分替代柴油的单液滴蒸发模型更能表征柴油在高温下的蒸发状态,且该六组分液滴初期蒸发较快、升温较慢,但总体生存时间增长,蒸发终了温度升高.液滴各组分表面质量分数快速减小(或增加),但中心质量分数只在蒸发后期稍有变化.  相似文献   

14.
建立了液滴蒸发的实验系统,采用悬挂液滴法对高温气流中单、双液滴的蒸发特性进行研究.实验结果表明:双液滴实验时的液滴蒸发过程与单液滴蒸发过程类似;液滴间相互作用使液滴周围蒸汽的浓度增大,气液传质浓度差减小,液滴与周围环境的传质速度降低,使蒸发速率减小;在纯辐射环境中液滴间相互作用对蒸发过程的影响较强,在辐射对流环境中液滴间相互作用对蒸发过程的影响较弱.  相似文献   

15.
采用挂滴法对正常重力下处于亚/超临界压力环境中的不同碳氢燃料液滴蒸发与燃烧现象做了详细的试验研究.采用嵌入液滴内部的热电偶和高速相机分别记录液滴温度变化和液滴发展图像.结果表明:在亚临界压力环境下,液滴燃烧过程具有平衡蒸发阶段,符合准定常假设,但在超临界压力环境下,液滴燃烧过程不再出现平衡蒸发阶段,准定常假设已不成立;液滴燃烧持续时间在亚临界状态下随着压力的增加而迅速减小,此时相平衡控制液滴燃烧速率的大小,但在超临界状态下,液滴与环境气体之间的界面变得模糊不清,燃烧持续时间随着环境压力的增加不再继续减小,而是趋于一稳定值,此时液滴已不存在相变过程,扩散系数开始影响燃烧速率;燃烧持续时间变化趋势在临界压力处的转变反映出临界压力点是判断液滴是否进入超临界燃烧的重要依据,液滴燃烧过程中液滴完全蒸发所占的时间比重在亚临界压力环境下变化不大,而在超临界压力环境下迅速减小,相对更早地完成液滴蒸发.  相似文献   

16.
针对多组分混合燃料的喷雾过程研究了相应的液滴蒸发模型,着重于研究混合燃料的组分对其液滴蒸发特性的影响.对柴油-生物柴油混合燃料的液滴蒸发模拟,依据燃料本身的特点,分别采用连续热力学方法和离散组分法描述其中柴油和生物柴油的组成.利用所得模型,对单组分燃料、双组分燃料以及生物柴油的液滴进行了蒸发模拟,通过将液滴蒸发历史曲线与试验结果对比,发现对于这些燃料液滴的蒸发模拟结果与相应试验数据很好地吻合,证实了此混合燃料液滴蒸发模型的正确性.此外,还着重对柴油-生物柴油的混合燃料的液滴进行了蒸发模拟研究,探讨混合燃料成分对其液滴蒸发特性的影响.结果表明:轻质柴油组分在蒸发过程中优先蒸发,而相对重质的柴油组分的蒸发则相对滞后,生物柴油在混合燃料中的质量分数则在液滴蒸发过程中不断增加,随着重质组分在柴油中所占比例达到一定程度之后,生物柴油的质量分数则开始迅速减小.  相似文献   

17.
为研究物性参数差异对苄基叠氮复合柴油液滴蒸发特性的影响,选择正十六烷作为柴油的替代物,在不考虑液相化学反应的前提下构建了苄基叠氮-正十六烷多组分液滴蒸发模型.然后利用该模型分析了液滴的蒸发过程,研究了苄基叠氮质量分数和环境温度对液滴蒸发过程的影响.结果表明,苄基叠氮-正十六烷液滴蒸发可分为瞬态加热阶段、混合蒸发阶段和平衡蒸发阶段.苄基叠氮由于其相对正十六烷较高的饱和蒸气压、较小的定压比热容以及较大的蒸气相扩散系数,因而具有较快的蒸发特性.随着苄基叠氮质量分数的增加,液滴蒸发速率不断提高;随着环境温度的升高,液滴升温速率不断增大,平衡蒸发温度不断升高,液滴蒸发速率不断增大,但是这一变化趋势并不与温度呈线性关系.  相似文献   

18.
为了研究压力条件下液滴间相互作用对其蒸发速率的影响,采用相位粒子干涉成像(PHIPI)技术对无水乙醇的单分散液滴流在定压腔内的蒸发进行了研究.将射流破碎产生的单分散液滴流注入定压腔中,利用高速显微阴影法对液滴流的尺寸和间距进行了标定.采用粒子测速成像技术对液滴流附近气体运动进行表征.随后,在环境压力0.1~0.8 MPa下,对粒径范围100~200μm的液滴在无量纲间距参数2~4、液滴速度4.1~7.3 m/s等工况下的蒸发速率进行了测量.实验结果表明,液滴相对间距越小,液滴蒸发速率越慢;在室温下,环境压力对液滴的蒸发起抑制作用;液滴流速越小,压力对其蒸发的影响越明显.  相似文献   

19.
为达到新型燃料发动机高效工作的目的,基于质量、动量、能量方程,对单个乙醇液滴在高温氮气环境下的运动和蒸发过程建立数学模型,通过与实验数据对比,验证了模型的有效性。分析了不同环境压力下,液滴温度、速度、尺寸与时间和贯穿距离的关系。结果表明:环境压力越高,瞬态和平衡蒸发阶段时间越长,温度越高;液滴运动速度下降越快,贯穿距离越短;蒸发速度越慢,液滴寿命越长。在液滴速度连续变化的距离内,液滴温度逐渐上升,而尺寸略有膨胀。随环境压力升高,瞬态阶段的膨胀越显著。  相似文献   

20.
煤液化油的蒸发与着火特性   总被引:3,自引:0,他引:3  
采用挂滴方法实验研究了高温氧化环境下的单液滴煤液化油的蒸发和着火特性,并与煤油、柴油进行了对比.采用热电偶测量液滴和液滴附近的气相温度随时间的变化历程,从而得到液滴的蒸发时间和着火时间,环境温度分别为700,℃、770,℃和820,℃,选择了4种液滴直径:1.1,mm、1.24,mm、1.42,mm和1.56,mm.实验结果表明,随着环境温度的升高,蒸发时间和着火延迟时间缩短,直径的增加会导致蒸发时间和着火延迟时间变长,与煤油和柴油的对比实验表明,煤液化油的蒸发特性介于煤油和柴油之间.煤液化油的着火延迟时间比柴油的着火延迟时间短.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号