首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
以并联式液压混合动力节能车辆为研究对象,针对其制动能量回收与再利用,分析液压再生系统工作原理以及二次元件、蓄能器和转矩耦合器的参数,并制定动态分配转矩的能量管理策略。基于AMESim仿真软件,搭建液压再生系统模型并进行仿真分析。结果表明:利用能量管理策略的再生制动与驱动过程,在不损失制动效果前提下,能有效改善车辆动力性,加大制动能量回收与再利用程度,提高燃油经济性。  相似文献   

2.
目前国内液压节能汽车试验平台结构复杂,管路繁多,液压泵/马达、飞轮等的动态参数不确定,无法满足多种工况下的实验配合问题。新型车辆制动能量回收模拟系统,使用电液比例控制系统代替传统的液压泵/马达,可实现能量回收过程多种复杂工况的动态模拟。设计车辆制动能量回收模拟系统,运用MATLAB/Simulink软件,建立了车辆制动能量回收模拟系统的仿真模型,通过仿真得到了该模拟系统在充、放液过程中的动态特性,并设计了试验台架,为后续车辆制动能量回收系统的实验研究提供了平台。  相似文献   

3.
为了回收挖掘机回转平台制动过程中的制动能量,设计了油液混合动力挖掘机回转系统,利用蓄能器回收回转平台的制动能量。阐述油液混合动力回转系统和普通回转系统液压原理的不同,建立AMESim模型并进行仿真分析。仿真结果表明:油液混合动力挖掘机回转系统在一定程度上降低了液压泵的功率损耗和液压马达的压力波动;在节能方面,蓄能器的能量回收效率达到70.0%,再利用效率达到72.8%,利用率较高,达到节能的目的。  相似文献   

4.
电动汽车在运行期间,动力变化幅度较大,加速或爬坡时吸收能量,制动减速时则释放能量。如何提高能量的储备与利用率,增加电动汽车的续航里程,提高电池的使用寿命,是迫切需要解决的问题。针对电动汽车的工作特点,引入液压助力驱动系统,当电动汽车正常行驶时,由电机带动泵向蓄能器充液,如车辆需要增加动力,则由蓄能器放液,由液压马达助力电机驱动车辆,从而实现能量的回收利用。设计了液压助力系统,进行了主要元件的计算选型。  相似文献   

5.
牙轮钻机采用静液压制动,需要避免系统压力波动对泵产生的冲击,同时钻机的动能或者势能可以回收再利用。通过对静液压制动系统的计算与仿真分析,对闭式泵高压溢流阀参数进行调整,减小系统压力冲击;提出了制动系统能量回收方案,并对能量回收系统进行了数学建模与仿真分析,获得了蓄能器气腔压力随时间的增长关系,揭示了节流阀开度大小与制动时间的关系;对制动系统能量回收效率进行了计算。证明了牙轮钻机采用静液压制动系统的正确性以及能量回收方案的可行性,实现了将钻机动能或者势能转换为蓄能器压力能的能量回收,为大型车辆制动系统能量回收提供了参考。  相似文献   

6.
胡万强 《机床与液压》2024,52(3):191-195
提出一种液-气压能量回收系统,该系统主要由液压子系统和气压子系统组成。车辆制动时带动马达旋转,负载动能转变为液压能储存在蓄能器中,进而带动空气压缩机转动。介绍系统组成及工作原理;对系统车辆动力学、液压子系统、气压子系统进行建模分析;最后,对系统的能量利用率等进行分析。结果表明:该方案在制动过程中对系统能量回收率可达84.7%,证明了所设计方案的有效性。  相似文献   

7.
在传统的矿用车液压制动系统理论基础上,在安全情况下,基于混合动力矿用车再生制动能量回收最大化,提出了一种后轮并联混合矿用车再生制动力分配与再生制动控制策略。主要考虑电机发电效率、电池的SOC值及制动力分配等综合因素对再生制动能量回收的影响,运用ADVISOR进行整车建模和典型矿山制动工况下仿真。结果表明:制动初速度为15 km/h,制动强度Z分别为0.1、0.3、0.5的最大再生制动能量回收效率分别为65.01%、55.99%、46.41%。采用后驱并联混合矿用车再生制动控制策略解决制动安全性能问题,并实现最大化再生制动回收效率。  相似文献   

8.
液压蓄能式车辆制动能量回收系统的AMESim仿真研究   总被引:3,自引:1,他引:2  
建立车辆液压蓄能式制动能量回收装置的AMESim仿真模型,对其工作过程中的能量损耗情况和制动性能的影响因素进行仿真研究。仿真结果表明:能量回收制动过程中,由于车辆行驶阻力造成的损失占车辆总动能的16%,是能量损失的主要方面;提高能量回收效率的办法是提高蓄能器预充气压力或减小蓄能器体积;改变液压泵/马达排量对提高能量回收效率的影响不大,但可显著影响车辆的起动和制动时间。  相似文献   

9.
静液压叉车通过制动溢流阀完成行走制动的过程中,叉车大部分动量以热能的形式流失。为了减少制动溢流损失,设计一套基于蓄能器及双联泵/马达的静液压叉车行走制动能量回收系统。分析该能量回收系统工作原理,对叉车各元件的参数进行了计算,建立了系统数学模型和AMESim仿真模型,并对无能量回收启停和能量回收启停两种工况进行了对比分析。结果表明:该系统的蓄能器回收效率可达到26.41%,能量再利用效率可达到90.81%,总节能效率最高可达23.98%。此能量回收系统节能效率可观,为静液压叉车节能技术的进一步研究提供了参考。  相似文献   

10.
韩慧仙 《机床与液压》2016,44(22):123-126
分析装载机的工况与能量回收技术,针对传统装载机行走制动能量回收存在的问题,设计了一种新的轮式装载机行走制动能量回收和辅助驱动液压系统。此系统能实现能量回收和辅助驱动的双向工作,由于采用了三位四通换向阀的切换作用,蓄能器在一个工作循环工作两次,即两次充液、两次放液,从而能够回收更多的制动能量。结果表明:本系统节能性更好,并且具有故障应急功能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号