首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yang Si  Tao Ren  Yan Li  Bin Ding  Jianyong Yu 《Carbon》2012,50(14):5176-5185
Hierarchical porous, magnetic Fe3O4@carbon nanofibers (Fe3O4@CNFs) based on polybenzoxazine precursors have been synthesized by a combination of electrospinning and in situ polymerization. The benzoxazine monomers could easily form thermosetting nanofibers by in situ ring-opening polymerization and subsequently be converted into CNFs by carbonization. The resultant fibers with an average diameter of 130 nm are comprised of carbon fibers with embedded Fe3O4 nanocrystals, and could have a high surface area of 1885 m2 g?1 and a porosity of 2.3 cm3 g?1. Quantitative pore size distribution and fractal analysis were used to investigate the hierarchical porous structure using N2 adsorption and synchrotron radiation small-angle X-ray scattering measurements. The role of precursor composition and activation process for the effects of the porous structure is discussed, and a plausible correlation between surface fractal dimension and porous parameter is proposed. The Fe3O4@CNFs exhibit efficient adsorption for organic dyes in water and excellent magnetic separation performance, suggesting their use as a promising adsorbent for water treatment, and also provided new insight into the design and development of a carbon nanomaterial based on a polybenzoxazine precursor.  相似文献   

2.
Phase evolution and morphology of Fe3O4‐Si‐Al powder mixtures during ball milling from 30 min to 20 h were investigated. A 3‐h critical milling was necessary for the occurrence of mechanically activated combustion reaction. The reaction results in the formation of Fe (Si), Fe3Si, and α‐Al2O3. During ball milling from 3 to 20 h, Fe (Si) and Fe3Si were combined into disordered Fe3Si intermetallic and Fe3Si‐Al2O3 composite powder was formed. The presence of in situ formed alumina leads to a decrease in crystallite and particle sizes. The Fe3Si‐Al2O3 particles after milling for 20 h had a crystalline size of 10~12 nm.  相似文献   

3.
In this study, we report template and surfactant‐free, low temperature (70°C) synthesis of needle‐like α‐FeOOH and its conversion at 400°C into α‐Fe2O3 nanorods using Fe(+2) and Fe(+3) chlorides and urea as a hydrolysis‐controlling agent. The isolated needle‐like α‐FeOOH indicates asparagus‐type growth pattern having length ca. 600 nm with 80 nm diameter at base and apex diameter of around 10 nm. The sample on heating (α‐Fe2O3) shows nanorod‐like morphology. The samples were characterized using various physicochemical characterization techniques such as XRD, Raman spectroscopy, UV‐Vis spectroscopy, particle size distribution analysis, Field Emission Scanning Electron Microscopy (FE‐SEM), and humidity sensing performance. The humidity sensing behavior of both α‐FeOOH and α‐Fe2O3 was studied. The α‐FeOOH shows quicker (10 s) and higher response toward change in humidity from 20%RH to 90%RH as compared with α‐Fe2O3 (60 s). Their typical morphology and crystalline structure plays an important role in humidity sensing behavior.  相似文献   

4.
Uniform sets of mono‐crystalline nanoparticles ranging from 6 nm to over 100 nm were prepared for the MgO, Co3O4, and Fe3O4 oxide systems. The nanoparticles were characterized by transmission electron microscopy (TEM) and x‐ray diffraction (XRD). A careful analysis shows increased lattice parameter for smaller nanoparticles of each oxide system: 0.47% expansion from bulk for 7 nm MgO crystallites, 0.15% expansion from bulk for 9 nm Co3O4 crystallites, and 0.13% expansion from bulk for 6 nm Fe3O4 crystallites. The compressive surface stresses and expansion energies against hydrostatic pressure for each oxide system were calculated, respectively, to be 4.13 N/m and 1.8 meV/formula unit for MgO, 3.09 N/m and 0.87 meV/formula unit for Co3O4, and 1.26 N/m and 0.67 meV/formula unit for Fe3O4. The fundamental understanding of oxide nanoparticle mechanics as presented here will facilitate integration of these materials into technological applications in a rationally designed manner.  相似文献   

5.
Polyacrylonitrile (PAN)/Fe3O4 composite nanofibers were prepared via the electrospinning of the PAN spinning solutions with magnetite Fe3O4 nanoparticles. The experimental results showed that the morphology and diameter of the nanofibers strongly depended upon concentrations of PAN and salt additives in the spinning solutions. A suitable PAN concentration and LiCl additives could effectively prevent the occurrence of beads in the electrospinning process and affected the diameters of the electrospun nanofibers. The breaking strength and breaking strain decreased when the magnetite Fe3O4 nanoparticles were incorporated. The prepared PAN/Fe3O4 nanofibers were superparamagnetic at room temperature. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
Fibres-based soft magnetic composites (FSMCs) have been prepared by using Fe fibres of different diameters (65, 125, 250 and 500 μm). The Fe fibres were coated with a 3 μm thick layer of Fe3O4 via the blackening process and subsequently compacted at 700 MPa. The X-ray diffraction analysis (XRD) was used to prove the formation of the Fe3O4 coating on the surface of the fibres. The thickness and the uniformity of the coating were analysed via scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The DC measurements performed on the composite cores revealed that the saturation induction increase from 1.36 to 1.68 T, the maximum relative permeability increase from 550 to 940, and the coercive field decrease from 796 to 454 A/m as the fibre's diameter increase from 65 to 500 μm. By using thinner fibres (65 and 125 μm), composites with low losses and stable initial relative permeability, in the frequency range 50 Hz–10 kHz, can be obtained. To distinguish between different types of losses dissipated by our compacts, and the influence of the fibre's diameter on the different components of the total losses, a numerical model for loss separation is proposed. The comparative evolution of the AC magnetic characteristics of the FSMCs and powder-based SMCs is presented. According to the presented results, this new type of composites can be successfully used to prepare magnetic cores designated to work in the medium to high-frequency range.  相似文献   

7.
In general, the technologically important ferrites nanoparticles, magnetite and maghemite, are converted from cubic to the more stable rhombohedral structure above 500°C‐700°C under air/vacuum/inert atmosphere. Here, we report, the superior thermal stability of polymer capped Fe3O4 (PCIO) nanocluster (synthesized using microwave‐assisted polyol approach) up to 1000°C under vacuum and inert atmosphere. Raman spectra of post annealed PCIO nanoclusters show the Fe3O4 phase with carbon signature due to the decomposition of polymer matrix. The carbon layer seems to act as a thermal shield and increases the activation energy thereby preventing the intrusion of heat, oxygen, volatiles mass into the magnetic core. The presence of carbon layer was further confirmed from the high‐resolution transmission electron microscopic image. After thermal annealing at 1000°C, PCIO nanoclusters showed superparamagnetic behavior with a saturation magnetization of 89 emu/g, close to the bulk saturation magnetization of Fe3O4 phase. In contrast, the uncoated Fe3O4 (UCIO) nanoclusters decompose at 700°C into α‐Fe2O3 and FeO phases under similar annealing conditions. Our findings open up new possibilities of stabilizing nanomaterials for high‐temperature applications.  相似文献   

8.
《Ceramics International》2017,43(8):6371-6376
Hybrid nanocomposites consisting of uniform Fe3O4 nanoparticles and boron nitride (BN) nanospheres were synthesized via an ethanol-thermal reaction method. The spherical BN nanoparticles (BNNSs) with average diameter 150 nm have been uniformly coated with dense ultra-small Fe3O4 nanoparticles (with average diameter of 10 nm), forming novel Fe3O4@BNNS nanocomposites. Magnetic measurement by using vibrating sample magnetometer (VSM) indicates that the Fe3O4 coating is superparamagnetic, and the nanocomposites can be physically manipulated at a low magnetic field. Preliminary biocompatibility study has also been performed to evaluate the toxicity of the nanocomposites. The nanocomposites show cytocompatibility at low concentration and have little effect on cell viability of MCF-7, MCF-10 and Hela cell lines. The Fe3O4@BNNS nanocomposites may find a wide range of potential applications including water treatment, catalysts, carriers for boron neutron capture therapy and magnetic-targeted drug delivery.  相似文献   

9.
《Ceramics International》2021,47(22):31681-31690
A functional Fe3O4/SiO2 core–shell abrasive was synthesized via hydrolysis of tetraethyl orthosilicate. A silica shell was successfully coated on a Fe3O4 core, resulting in a core-shell particle with an average diameter of 140 nm. The prepared core–shell abrasives was utilized for ultrasound-assisted magneto-rheological polishing (UAMP) of sapphire substrate. The experimental results showed that the Fe3O4/SiO2 core–shell abrasives exhibited a remarkable polishing performance for the sapphire material, resulting in smooth and detect-free surfaces with a high material removal rate (MRR) compared to mixed abrasives (Fe3O4 and SiO2) and pure Fe3O4 particles. The application of ultrasonic vibration to the sapphire wafer further improved the MRR, which was approximately 3.4 times higher than that of traditional magneto-rheological polishing. The largest MRR (1.974 μm/h) and comparatively low surface roughness (0.442 nm) of the polished sapphire wafer were achieved by UAMP with the Fe3O4/SiO2 core–shell abrasives. The polishing mechanism of the sapphire wafer is discussed in terms of chemical reactions and mechanical polishing.  相似文献   

10.
《Ceramics International》2020,46(14):22049-22056
For the first time, continuous layers of yttrium iron garnet (YIG, Y3Fe5O12) with a thickness of about 2 μm were synthesized on ferroelectric ceramic substrates based on lead titanate zirconate (PZT, PbZr0·45Ti0·55O3). The Y3Fe5O12 layer was deposited by ion-beam sputtering – deposition on PZT substrates of 400 μm thick by sputtering a polycrystalline target of the composition Y3Fe5O12 with a mixture of argon and oxygen ions. Due to preliminary planarization of the PZT surface with a TiO2 layer, a high-quality plane-parallel YIG/PZT interface was obtained, which is confirmed by scanning electron microscopy in combination with the focused ion beam technique. Atomic force microscopy showed that planarization makes it possible to achieve surface smoothness of 10 nm.The YIG/PZT heterostructures obtained in this work are potentially attractive for use in logic circuits based on low-scattering spin waves, memory elements, as well as electrically controlled microwave devices.  相似文献   

11.
《Ceramics International》2016,42(9):10682-10689
A ternary nanocomposite of Fe3O4@SnO2/reduced graphene oxide (RGO) with different contents of SnO2 nanoparticles was synthesized by a simple and efficient three-step method. The transmission electron microscopy and field emission scanning electron microscopy characterization display that plenty of Fe3O4@SnO2 core–shell structure nanoparticles are well distributed on the surface of RGO sheets. The X-ray diffractograms show that the products consist of highly crystallized cubic Fe3O4, tetragonal SnO2 and disorderedly stacked RGO sheets. The magnetic hysteresis measurement reveals the ferromagnetic behavior of the products at room temperature. The microwave absorption properties of paraffin containing 50 wt% products were investigated at room temperature in the frequency range of 2–18 GHz by a vector network analyzer. The electromagnetic data show that the maximum reflection loss is −45.5 dB and −29.5 dB for Fe3O4@SnO2/RGO-1 and Fe3O4@SnO2/RGO-2 nanocomposite, respectively. Meanwhile, the reflection loss less than −10 dB is up to 14.4 GHz and 13.8 GHz for Fe3O4@SnO2/RGO-1 and Fe3O4@SnO2/RGO-2 nanocomposite, respectively. It is believed that such nanocomposite could be used as promising microwave absorbers.  相似文献   

12.
Co3O4 nanofibers were prepared by an electrospinning method and characterized by differential thermal and thermal gravimetric analyzer (DTA‐TGA), X‐ray diffraction (XRD), Fourier Transform Infrared Spectrometer (FT‐IR), and scanning electron microscopy (SEM). Xylene‐sensing properties of the as‐prepared nanofibers were also investigated in detail. The results showed that the morphology of the as‐prepared fibers was largely influenced by the calcination temperature. The Co3O4 nanofibers calcined at 500°C exhibited the highest response to xylene in a wide concentration range. Moreover, Co3O4 nanofibers calcined at 500°C also exhibited good selectivity, fast response (15 s) and recovery (22 s) rate at a low operating temperatures of 255°C. These properties make the fabricated nanofibers good candidates for xylene detection.  相似文献   

13.
《Ceramics International》2017,43(2):1887-1894
Fe3O4/reduced graphene oxide (RGO) nanocomposite was synthesized by a simple hydrothermal method and then SiO2 coated onto Fe3O4 by a modified Stӧber method. The transmission electron microscopy and field emission scanning electron microscopy characterization indicate that masses of Fe3O4@SiO2 core-shell structure nanospheres attached to the RGO sheets, and that the thicknesses of SiO2 shells are about 20–40 nm. The X-ray diffractograms and Raman spectra illustrate that the synthesized samples consist of highly crystallized cubic Fe3O4, amorphous SiO2 and disorderedly stacked RGO sheets. The magnetic hysteresis loops reveal the ferromagnetic behavior of the samples at room temperature. In addition, the Fe3O4@SiO2/RGO paraffin composite exhibit excellent electromagnetic wave absorption properties at room temperature in the frequency range of 2–18 GHz, which are attributed to the effective complementarities between the dielectric loss and magnetic loss. For Fe3O4@SiO2/RGO-1 and Fe3O4@SiO2/RGO-2 nanocomposite, the minimum reflection loss can reach −26.4 dB and −16.3 dB with the thickness of 1.5 mm, respectively. The effective absorption bandwidth of the samples can reach more than 10.0 GHz with the thickness in the range of 1.5–3.0 mm. It is demonstrated that such nanocomposite could be used as a promising candidate in electromagnetic wave absorption area.  相似文献   

14.
We prepared Bi6Fe2Ti3O18 thin films on Pt/Ti/SiO2/Si substrates with thickness ranging from ~300 to ~900 nm by using a chemical solution deposition route and investigated the thickness effects on the microstructure, dielectric, leakage, and ferroelectric properties of Bi6Fe2Ti3O18 thin films. Increasing thickness improves the surface morphology, dielectric, and leakage properties of Bi6Fe2Ti3O18 thin films and a well‐defined ferroelectric hysteresis loops can form for the thin films with the thickness above 400 nm. Moreover, the thickness dependence of saturation polarization is insignificant, whereas the remnant polarization decreases slightly with increasing thickness and it possesses a maximal value of ~20 μC/cm2 for the 500 nm‐thick thin films. The mechanisms of the thickness dependence of microstructure, dielectric, and ferroelectric properties are discussed in detail. The results will provide a guidance to optimize the ferroelectric properties in Bi6Fe2Ti3O18 thin films by chemical solution deposition, which is important to further explore single‐phase multiferroics in the n = 5 Aurivillius thin films.  相似文献   

15.
Y2O3:Er3+ hollow nanofibers were prepared by calcination of the monoaxial electrospinning‐derived PVP/[Y(NO3)3+Er(NO3)3] composite nanofibers, and then Y2O2S:Er3+ hollow nanofibers were synthesized by sulfurization of the as‐obtained Y2O3:Er3+ hollow nanofibers via a double‐crucible method using sulfur powders as sulfur source. X‐ray diffraction (XRD) analysis shows that the Y2O2S:Er3+ hollow nanofibers are pure hexagonal phase with the space group of . Scanning electron microscope (SEM) observation indicates that the Y2O2S:Er3+ hollow nanofibers are obvious hollow‐centered with the outer diameter of 176 ± 25 nm. Upconversion emission spectrum analysis manifests that Y2O2S:Er3+ hollow nanofibers emit strong green and weak red upconversion emissions centering at 526, 546, and 667 nm, respectively. The green emissions and the red emission are, respectively, originated from 2H11/2/4S3/24I15/2 and 4F9/24Il5/2 energy levels transitions of the Er3+ ions. The emitting colors of Y2O2S:Er3+ hollow nanofibers are located in the green region in CIE chromaticity coordinates diagram. The formation mechanism of the Y2O2S:Er3+ hollow nanofibers is also advanced. This preparation technique can be applied to prepare other rare‐earth oxysulfides hollow nanofibers.  相似文献   

16.
Multifunctional materials have received considerable attention as they could integrate different functional components in one-single platform. In this study, novel chitosan/Fe3O4/TiO2@TiO2 nanowire (NW) microspheres having extracellular matrix-like fibrous surface and photothermal antibacterial property were synthesized through in situ hydrothermal growth of TiO2 NWs on chitosan/Fe3O4/TiO2 microspheres. It is found that the microspheres were spherical in morphology with a diameter of 100–300 µm and exhibited a hierarchical and nanofibrous feature. Their surface was mainly constructed by numerous TiO2 NWs with a diameter of 20– 30nm. In vitro biological evaluation indicates that the chitosan/Fe3O4/TiO2@TiO2 NW microspheres significantly enhanced attachment and proliferation of human umbilical vein endothelial cells compared with chitosan/Fe3O4/TiO2 nanocomposite microspheres due to the presence of nanofibrous surface. Moreover, the microspheres showed photothermal antibacterial property to inhibit the growth of bacteria due to the presence of Fe3O4 component.  相似文献   

17.
In this study, magnetic Fe3O4 particles were prepared from copper/iron ore cider by precipitation oxidization method. The yield of Fe was 82.6 at%. XRD, TEM, SEM, EDS and microwave network analyzer were used to characterize the particles. The results showed that Fe3O4 particles were well crystallized and possessed an octahedral morphology, and the crystal size was about 200 nm; the sample with 70 wt% Fe3O4 exhibited the optimal absorbing ability, the minimum reflection loss was ?42.7 dB at 14.08 GHz and the bandwidth less than ?10 dB was about 4.2 GHz when the sample thickness was 1.9 mm. It was clearly demonstrated that the Fe3O4 particles prepared from copper/iron ore cider could be used as an effective microwave absorbing material.  相似文献   

18.
Luminomagnetic nanostructured Nd3+ doped fluorapatite (FAP) coated Fe3O4 nanoparticles were produced by hydrothermal method. X-ray diffraction analysis indicates that the prepared nanoparticles contain both FAP and Fe3O4 phases. Electron microscope analysis shows the formation of nanoparticles of Fe3O4 encased in rod shaped FAP nanoparticles of average length 40 nm. Magnetic measurements confirm the room temperature superparamagnetic nature of the nanoparticles with saturation magnetization value up to 7.8 emu/g. The prepared nanoparticles display strong near infrared (NIR) emission at 1060 nm under 800 nm excitation. Cell viability studies for 72 hour demonstrate the survival rate of over 84% with 500 μg/mL concentration indicating the good cytocompatibility of the prepared materials. The present Nd3+ doped FAP coated Fe3O4 nanostructure provides an excellent multifunctional platform for diagnostics and therapeutic applications.  相似文献   

19.
Fe3O4@SiO2@ZnSe composite nanoparticles with superparamagnetism and luminescence have been prepared by a facile chemical method. Nontoxic fluorescent ZnSe quantum dots were assembled around the Fe3O4-silica core–shell nanocomposite via chemical bonds formed between –COOH and –NH2. Transmission electron microscopy images show that the nanocomposites are approximately spherical and between 50 nm and 80 nm in size. The bifunctional nanocomposites exhibit superparamagnetic behavior and good fluorescence intensity. Magnetic attraction test, vibrating sample magnetometer at 300 K, UV–visible absorption and fluorescence emission spectroscopy were applied to characterize the magnetic/fluorescent properties of the nanocomposites.  相似文献   

20.
La2O2CN2:Er3+and La2O2CN2:Er3+/Yb3+ upconversion (UC) luminescence nanofibers were successfully fabricated via cyanamidation of the respective relevant La2O3:Er3+ and La2O3:Er3+/Yb3+ nanofibers which were obtained by calcining the electrospun composite nanofibers. The morphologies, structures, and properties of the nanofibers are investigated. The mean diameters of La2O2CN2:Er3+ and La2O2CN2:Er3+/Yb3+ nanofibers are 179.46 ± 12.58 nm and 198.85 ± 17.07 nm, respectively. It is found that intense green and weak red emissions around 524, 542, and 658 nm corresponding to the 2H11/24I15/2, 4S3/24I15/2, and 4F9/24Il5/2 energy levels transitions of Er3+ ions are observed for La2O2CN2:Er3+ and La2O2CN2:Er3+/Yb3+ nanofibers under the excitation of a 980‐nm diode laser. Moreover, the emitting colors of La2O2CN2:Er3+ and La2O2CN2:Er3+/Yb3+ nanofibers are all located in the green region. The upconversion luminescent mechanism and formation mechanism of the nanofibers are also proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号