共查询到17条相似文献,搜索用时 62 毫秒
1.
基于改进BP神经网络的预测模型及其应用 总被引:21,自引:7,他引:21
对BP神经网络的结构及其训练算法进行了研究,并针对传统BP算法的缺陷,提出了一种采用L—M算法的改进BP神经网络。在此基础上建立了基于改进BP神经网络的非线性系统预测模型,并通过具体的仿真及实践结果验证了改进BP神经网络的有效性。 相似文献
2.
BP神经网络预测算法的改进及应用 总被引:3,自引:0,他引:3
BP算法是应用广泛的神经网络算法,具有较强的非线性拟合能力,可以用来预测非线性时间序列数据的发展趋势。但在实际应用和仿真过程中,由于算法本身的限制和不足,对于仿真和计算都会带来很多问题,比如网络训练过程中程序异常中止、训练时间过长、仿真精度不高等。针对这样的情况。通过分析算法本身和训练仿真过程,找到了相应的原因和解决方法,研究了传统BP神经网络模型的缺陷并提出附加动量的方法来改进BP神经网络,最后通过在Matlab仿真环境下的实际仿真过程,验证了改善效果。 相似文献
3.
以高校大学生常见心理疾病作为研究对象,充分利用L-M算法的全局寻优性及局部收敛性的特点对BP神经网络进行优化,建立基于改进的BP算法的心理诊断模型,实现简单的模式识别。仿真结果表明:该模型减少了训练迭代次数,缩短了训练时间,具有较高的准确性,应用该神经网络建立心理障碍诊断系统也是有效的。 相似文献
4.
在分析传统BP算法的不足的基础上,提出了将Levenbery-Marquard、优化法与神经网络模型相结合的L-M优化BP算法。此方法与传统算法相比学习速度得到了提高,网络的收敛加快,尽量避免了系统陷入局部最小;针对某电力局某地区的单条线路的实际数据,采用基于Levenbery-Marquardt优化的I3P算法的神经网络模型对其进行了仿真,结果表明该方法具有较高的预测精度和较强的适应能力。 相似文献
5.
基于改进BP网络的染色合格率预测 总被引:1,自引:2,他引:1
由于多种因素对染色质量的影响是非线性的,本文在分析影响染色质量因素的基础上,提出了基于BP神经网络的染色合格率预测模型。针对传统BP算法的缺陷,本文采用L-M算法改进BP网络。仿真结果表明,利用该模型预测染色合格率是比较准确而且有效的。 相似文献
6.
Adaboost算法改进BP神经网络预测研究 总被引:2,自引:0,他引:2
针对传统BP神经网络容易陷入局部极小、预测精度低的问题,提出使用Adaboost算法和BP神经网络相结合的方法,提高网络预测精度和泛化能力。该方法首先对样本数据进行预处理并初始化测试数据分布权值;然后通过选取不同的隐含层节点数、节点传递函数、训练函数、网络学习函数构造出不同类型的BP弱预测器并对样本数据进行反复训练;最后使用Adaboost算法将得到的多个BP神经网络弱预测器组成新的强预测器。对UCI数据库中数据集进行仿真实验,结果表明本方法比传统BP网络预测平均误差绝对值减少近50%,提高了网络预测精度,为神经网络预测提供借鉴。 相似文献
7.
为了有效提高混凝土抗压强度的预测精准度,利用粒子群算法优化BP神经网络初始权值和阈值,建立了混凝土抗压强多因子PSO-BP预测模型。模型以每立方混凝土中水泥、高炉矿渣粉、粉煤灰、水、减水剂、粗集料和细集料的含量以及置放天数为输入参数,混凝土抗压强度值作为输出参数,不仅可以克服BP算法收敛速度慢和易陷入局部极值的缺陷,而且模型的学习能力、泛化能力和预测精度都有了很大的提高。以UCI数据库中的Concrete CompressiveStrength数据集为例进行仿真测试,结果表明:PSO-BP模型预测精度较BP、GA—BP模型分别提高了8.26%和2.05%,验证了PSO—BP模型在混凝土抗压强度预测中的有效性。 相似文献
8.
提出一种改进的BP算法,通过对内蒙古气象环境状态指标体系的收集、预测与分析,从而为预测气象变化提供一种可操作性的方法,实践证明,该改进算法的预测能力优于传统的BP算法. 相似文献
9.
针对网络故障诊断过程中故障规则难以提取的问题,提出一种基于改进BP神经网络的故障诊断方法。以网络故障信息为样本对BP网络进行训练,利用其强大的自适应能力和非线性映射能力,建立起网络故障信息与故障模式输出之间的映射。同时,为了避免BP网络的学习算法陷入局部极小值,提高故障诊断的效率和精确度,采用L-M优化算法来对网络进行训练。另外,采取初期终止的方法提高BP网络的泛化能力。实例表明,该方法有效提高了网络故障诊断的有效性。 相似文献
10.
11.
介绍了BP神经网络的基本结构及原理,分析了其收敛慢的原因。为加快其收敛速度,结合带动量梯度下降法提出一种新的算法(PBBP),用多个学习速率不同但结构相同的网络进行并行训练,在每次迭代后都根据误差找出处于最佳状态的网络,并使其它网络的训练参数作适当变化再进行下一次迭代,直到整个网络的误差减小到允许范围内或达到训练次数要求,加快了其收敛速度,能够很好地脱离平坦区。通过在Matlab里编程进行仿真实验证明,该算法是可行的。 相似文献
12.
一种改进的复数BP神经网络算法研究 总被引:1,自引:0,他引:1
论文提出了复数BP神经网络的一种新结构和算法。算法的主要思想是将复值输人信号的实部和虚部分离,分别训练,使其达到稳定状态。其结构简单,易于实现,只需少量样本点却有很高收敛速度和精度。通过实验和仿真说明论文算法的有效性。 相似文献
13.
14.
针对BP网络的不足,分析了一般进化算法在神经网络结构优化过程中存在的问题,根据物种内优生优育原则和物种间相互竞争、相互学习的生物学原理,提出了一种新的基于进化算法的神经网络优化方法。该方法不但有效弥补了BP神经网络在网络结构、权值选择上的随机性缺陷,缩小了神经网络结构的解搜索空间,加快了BP网络的收敛速度,进而提高了搜索效率,而且还起到对网络的结构和权值进行同时进化的作用。实验结果表明该方法取得了良好的效果。 相似文献
15.
该论文提出了基于改进粒子群优化的BP算法. 在该算法中,通过对粒子群优化算法中的惯性权重的计算方法的改进,同时利用改进的PSO算法替代了BP算法中的梯度下降算法,使得改进后的算法具有不易与陷入局部极小等优点. 并将该算法利用在预测气温上,实验证明: 改进后的算法在预测模型上能够取得较好的预测效果,提高预测精度. 相似文献
16.