首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thin films of copper indium di-selenide (CIS) with a wide range of compositions near stoichiometry have been formed on glass substrates in vacuum by the stacked elemental layer (SEL) deposition technique. The compositional and optical properties of the films have been measured by proton-induced X-ray emission (PIXE) and spectrophotometry (photon wavelength range of 300–2500 nm), respectively. Electrical conductivity (σ), charge-carrier concentration (n), and Hall mobility (μH) were measured at temperatures ranging from 143 to 400 K. It was found that more indium-rich films have higher energy gaps than less indium-rich ones while more Cu-rich films have lower energy gaps than less Cu-rich films. The sub-bandgap absorption of photons is minimum in the samples having Cu/In ≈ 1 and it again decreases, as Cu/In ratio becomes less than 0.60. Indium-rich films show n-type conductivities while near-stoichiometric and copper-rich films have p-type conductivities. At 300 K σ, n and μH of the films vary from 2.15 × 10−3 to 1.60 × 10−1 (Ω cm)−1, 2.28 × 1015 to 5.74 × 1017 cm−3 and 1.74 to 5.88 cm2 (V s)−1, respectively, and are dependent on the composition of the films. All the films were found to be non-degenerate. The ionization energies for acceptors and donors vary between 12 and 24, and 3 and 8 meV, respectively, and they are correlated well with the Cu/In ratios. The crystallites of the films were found to be partially depleted in charge carriers.  相似文献   

2.
Plasmapolymer thin films with embedded silver nanoparticles were deposited by simultaneous plasma polymerization and metal evaporation. The particle size and shape were determined by transmission electron microscopy (TEM) and analysed by optical image processing. The optical properties in the UV/ VIS/NIR spectral region were determined by the plasma resonance absorption of the silver particles. Transmittance spectra were calculated with the Bergman effective medium theory and compared with experimental spectra.  相似文献   

3.
Choi BH  Lee HH  Jin S  Chun S  Kim SH 《Nanotechnology》2007,18(7):075706
To understand the collective properties of nanoparticles, it is necessary to control the particle size, spacing and ordering. Here we describe the chemical synthesis of well-controlled silver nanoparticles, the wet coat preparation and the optical properties of its film. The light incidence angle and polarization dependency of the resonant spectra show distinctive surface plasmon resonance extinction peaks for isolated particles and the coupled modes of neighbouring particles. Furthermore, we discuss the thermal treatment and dielectric surrounding effects on the optical properties of silver nanoparticle film.  相似文献   

4.
5.
Titanium nitride thin films were deposited by direct current magnetron sputtering with various tantalum (Ta) concentrations (2, 4 and 8 at.%). The films were characterized using UV/VIS spectrophotometer. Atomic force microscopy (AFM), high resolution transmission electron microscope (HRTEM) were used to observe the microstructure and X-ray photoelectron spectroscopy was used to investigate the core level and the valence band of the films. It was found that the film with 2 at.% Ta is more reflective in the infrared range and more transparent in the visible region (selective behavior). The AFM showed smooth nanostructured surface for the film without Ta addition. It was found that the films with 2 at.% Ta presented relatively coarser grains with larger roughness and the reflectance are not controlled by the surface morphology. Also, this film presented higher electrical conductivity. HRTEM analysis showed that 2 at.% Ta addition gave rise to well crystallized films with elongated nanocrystallites in comparison with the films having 0, 4 and 8 at.% Ta contents.  相似文献   

6.
7.
Copper indium diselenide (CuInSe2) compound was synthesized by reacting its elemental components, i.e., copper, indium, and selenium, in stoichiometric proportions (i.e., 1:1:2 with 5% excess selenium) in an evacuated quartz ampoule. Structural and compositional characterization of synthesized pulverized material confirms the polycrystalline nature of tetragonal phase and stoichiometry. CuInSe2 thin films were deposited on soda lime glass substrates kept at different temperatures (300–573 K) using flash evaporation technique. The effect of substrate temperature on structural, morphological, optical, and electrical properties of CuInSe2 thin films were investigated using X-ray diffraction analysis (XRD), atomic force microscopy (AFM), optical measurements (transmission and reflection), and Hall effect characterization techniques. XRD analysis revealed that CuInSe2 thin films deposited above 473 K exhibit (112) preferred orientation of grains. Transmission and reflectance measurements analysis suggests that CuInSe2 thin films deposited at different substrate temperatures have high absorption coefficient (~104 cm−1) and optical energy band gap in the range 0.93–1.02 eV. Results of electrical characterization showed that CuInSe2 thin films deposited at different substrate temperatures have p-type conductivity and hole mobility value in the range 19–136 cm2/Vs. Variation of energy band gap and resistivity of CuInSe2 thin films deposited at 523 K with thickness was also studied. The temperature dependence of electrical conductivity measurements showed that CuInSe2 film deposited at 523 K has an activation energy of ~30 meV.  相似文献   

8.
The influence of annealing time and of the silver over polymer ratio on the optical properties of the silver nanoparticles embedded in a poly(vinyl alcohol) matrix has been analyzed by spectroscopic ellipsometry in the visible/near-infrared spectral domains. The complex refractive index shows a localized absorption near 420 nm which can be attributed to localized surface plasmons. An atomic force microscopy topographic analysis shows that the particles were nearly spherical with an average size less than 20 nm, as confirmed by optical transmission measurements with polarized light. The size of the particles and their number respectively decreased and increased as the annealing time of the film increased, yielding a plasmon absorption band whose intensity is correlated to the silver nanoparticles density, estimated from their nearest-neighbour distance.  相似文献   

9.
The electrodeposited superionic conductor Ag6I4WO4 was doped with various concentrations of [CrO4]2– to form the quarternary compound Ag6I4WO4(1–xCrO4(x). The doping level,x, was varied from 0 to 0.6 and the optimum compound was used for further analysis. X-ray diffraction (XRD) analysis indicated major peaks occurring atd values of 3.75,2.29,1.96 and 3.96 in the order of decreasing intensity. The energy dispersive analysis of X-rays (EDAX) technique verified quantitatively the ratio of the components in the solid electrolyte. From the fringes seen in the interference pattern of the transmission spectrum, the refractive index and thickness of the film was calculated. The absorption spectrum indicated the characteristic chromate peak at 310 nm when the dopant was present. An open circuit voltage (OCV) of 670 mV was observed for the fabricated cells with optimum performance at a doping level ofx=0.1, where the best discharge characteristics were observed. The subsequent conductivity was calculated to be of the order 10–3–1 cm–1 from the Cole-Cole plot.  相似文献   

10.
Polycrystalline thin films of cadmium stannate (Cd2SnO4) were deposited by spray pyrolysis method on the Corning substrates at substrate temperature of 525 °C. Further, the films were annealed at 600 °C in vacuum for 30 min. These films were characterized for their structural, electrical and optical properties. The experimental results showed that the post-deposition annealing in vacuum has a significant influence on the properties of the films. The average grain size of the film was increased from 27.3 to 35.0 nm on heat treatment. The average optical transmittance in the visible region (500-850 nm) is decreased from 81.4% to 73.4% after annealing in vacuum. The minimum resistivity achieved in the present study for the vacuum annealed films is the lowest among the reported values for the Cd2SnO4 thin films prepared by spray pyrolysis method.  相似文献   

11.
Gamma radiation induced changes in the optical and electrical properties of tellurium dioxide (TeO2) thin films, prepared by thermal evaporation, have been studied in detail. The optical characterization of the as-deposited thin films and that of the thin films exposed to various levels of gamma radiation dose clearly show that the optical bandgap decreases with increase in the gamma radiation dose up to a certain dose. At gamma radiation doses above this value, however, the optical bandgap has been found to increase. On the other hand, the current vs voltage plots for the as-deposited thin films and those for the thin films exposed to various levels of gamma radiation dose show that the current increases with the gamma radiation dose up to a certain dose and that the value of this particular dose depends upon the thickness of the film. The current has, however, been found to decrease with further increase in gamma radiation dose. The observed changes in both the optical and electrical properties indicate that TeO2 thin films can be used as the real time gamma radiation dosimeter up to a certain dose, a quantity that depends upon the thickness of the film.  相似文献   

12.
The indium doped silver oxide thin films have been prepared at 275 °C on soda lime glass and silicon substrates by reactive electron beam evaporation technique; the deposition rate has been varied (by varying the electron beam current) in the range 0.94–16.88 nm/s keeping the oxygen flow rate constant. These films are polycrystalline. The electrical resistivity for these films decreases with increasing deposition rate. The AIO films prepared with a deposition rate of 5.7 nm/s show near p-type conductivity. The work function has been measured on these films by contact potential method using Kelvin Probe. The surface morphology of the films has been evaluated using atomic force microscopy (AFM). The roles of indium doping and oxygen vacancies in the electrical properties of these films have been analyzed; the ionized impurity scattering is the dominant mechanism controlling the electrical conduction in these films.  相似文献   

13.
A thin film of zinc selenide (ZnSe) was deposited onto a clean glass substrate using a vacuum evaporation technique. This thin film was characterized through X-ray diffraction, which indicated that the film was polycrystalline in nature. Absorption and transmission spectra of this thin film were recorded using a spectrophotometer. The energy band gap, refractive index and extinction coefficient were determined using these spectra. It was found that the energy band gap of ZnSe film was 2.55 eV. It was also observed that the refractive index and extinction coefficient of the film decreased with the increase of wavelength. The conductivity of this thin film was determined by current–voltage measurement using an electrometer over the temperature range from room temperature to 413 K. It was observed that conductivity increased with increase in temperature. This is explained on the basis of structural changes occurring due to the change in grain size and the increase in carrier density.  相似文献   

14.
Zinc oxide (ZnO) thin films were deposited on Si substrates using various working pressures by magnetron sputter. The resistivity of the deposited ZnO films decreases with working pressure, and the resistivity of 4.3 × 10−3 Ω cm can be obtained without post annealing. According to the optical transmittance measurements, the optical transmittance above 90% in the wavelength longer than 430 nm and about 80% in the wavelength of 380 nm can be found. Using time-resolved photoluminescence measurement, the carrier lifetime increases with working pressure due to the reduction of nonradiative recombination rate. The reduction of nonradiative recombination rate is originated from the decrease of oxygen vacancies in the ZnO films deposited at a higher working pressure. This result is verified by the photoluminescence measurements. Besides, by increasing the working pressure, the absorption coefficient was decreased and the associated optical energy gap of ZnO thin films was increased.  相似文献   

15.
Zinc oxide thin films have been grown on (100)-oriented silicon substrate at a temperature of 100 °C by reactive e-beam evaporation. Structural, electrical and optical characteristics have been compared before and after annealing in air by measurements of X-ray diffraction, real and imaginary parts of the dielectric coefficient, refractive index and electrical resistivity. X-ray diffraction measurements have shown that ZnO films are highly c-axis-oriented with a full width at half maximum (FWMH) lower than 0.5°. The electrical resistivity increases from 10−2 Ω cm to reach a value about 109 Ω cm after annealing at 750 °C. The FWHM decreases after annealing treatment, which proves the crystal quality improvement. Ellipsometer measurements show the improvement of the refractive index and the real dielectric coefficient after annealing treatment at 750 °C of the ZnO films evaporated by electron beam. Atomic force microscopy shows that the surfaces of the electron beam evaporated ZnO are relatively smooth. Finally, a comparative study on structural and optical properties of the electron beam evaporated ZnO and the rf magnetron deposited one is discussed.  相似文献   

16.
The thin films of Cd1-x Zn x S (x?=?0, 0.2, 0.4, 0.6, 0.8 and 1) have been prepared by the vacuum evaporation method using a mechanically alloyed mixture of CdS and ZnS. The structural, optical and electrical properties have been investigated through the X-ray diffractometer, spectrophotometer and Keithley electrometer. The X-ray diffraction patterns of these films show that films are polycrystalline in nature having preferential orientation along the (002) plane. In the absorption spectra of these films, absorption edge shifts towards lower wavelength with the increase of Zn concentration. The energy band gap has been determined using these spectra. It is found that the energy band gap increases with increasing Zn concentration. The electrical conductivity of so prepared thin films has been determined using a IV characteristic curve for these films. The result indicates that the electrical conductivity decreases with increasing Zn content and increases with temperature. An effort has also been made to obtain activation energy of these films which increases with increasing Zn concentration in CdS.  相似文献   

17.
The electrical properties of silver selenide thin films prepared by reactive evaporation have been studied. Samples show a polymorphic phase transition at a temperature of 403 ± 2 K. Hall effect study shows that it has a mobility of 2000 cm2V?1s?1 and carrier concentration of 1018 cm?3 at room temperature. The carriers are ofn-type. X-ray diffraction study indicates that the as-prepared films are polycrystalline in nature. The lattice parameters were found to bea= 4.353 Å,b= 6.929 Å andc = 7.805 Å.  相似文献   

18.
《Thin solid films》1987,151(1):71-86
Thin films of polymeric copper acetylacetonate were prepared by means of glow discharge plasma polymerization. The films thus obtained showed a variety of colours such as colourless transparent, yellow, green, blue, red and gold as well as a wide range of electroconductivities from insulating (10-10 S cm-1 or less) to metallic (104 S cm-1 or more) depending on the plasma conditions. With increasing total plasma energy, e.g. by increasing the plasma power, and/or the plasma duration, the film became more conductive.The films with a conductivity between 10-5 and 10-2 S cm-1 showed bistable switching characteristics corresponding to high resistance (OFF) and low resistance (ON) states.The structure of the films was investigated using Fourier transform IR spectroscopy, X-ray photoelectron spectroscopy, electron diffraction and electron microscopy, and a texture of dispersed metal islands within the polymer matrix was found.  相似文献   

19.
The influence of substrate temperature on the structural, optical and electrical properties of ZnO films prepared by the spray pyrolysis method using aqueous solution of zinc acetate has been investigated. The films are polycrystalline and X-ray diffraction measurements show a strong preferred orientation along the [002] plane which is strongly dependent on the substrate temperature. Optical absorption spectra, show high transparency of the film (90–95% transmission) in the visible range, with a sharp absorption edge around 375 nm wavelength of light which closely corresponds to the intrinsic band gap of ZnO (3.3 eV). ZnO films with the lowest resistivity, which is due to the increased mobility resulting from the improvement of the crystallinity of the films, can be prepared at a substrate temperature of 490 °C.  相似文献   

20.
In the present work, we have deposited calcium doped zinc oxide thin films by magnetron sputtering technique using nanocrystalline particles elaborated by sol–gel method as a target material. In the first step, the nanoparticles were synthesized by sol–gel method using supercritical drying in ethyl alcohol. The structural properties studied by X-ray diffractometry indicates that Ca doped ZnO has a polycrystalline hexagonal wurzite structure with a grain size of about 30 nm. Transmission electron microscopy (TEM) measurements have shown that the synthesized CZO is a nanosized powder. Then, thin films were deposited onto glass substrates by rf-magnetron sputtering at ambient temperature. The influence of RF sputtering power on structural, morphological, electrical, and optical properties were investigated. It has been found that all the films deposited were polycrystalline with a hexagonal wurtzite structure and preferentially oriented in the (0 0 2) crystallographic direction. They have a typical columnar structure and a very smooth surface. The as-deposited films show a high transmittance in the visible range over 85% and low electrical resistivity at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号