共查询到18条相似文献,搜索用时 78 毫秒
1.
目的:确定葡萄籽中多酚提取的最佳工艺。方法:以葡萄籽为原料,采用超声波辅助提取葡萄籽多酚。比较酒石酸亚铁法和Folin-Ciocalteau法测定多酚含量的不同,在单因素实验的基础上,应用Box-Behnken实验设计和响应面分析法,探讨液料比、超声时间、超声功率、浸提温度对多酚提取量的影响。结果:超声波辅助提取葡萄籽多酚的最佳工艺条件为液料比13∶1(mL/g)、时间100min、超声功率36W、浸提温度45℃,葡萄籽多酚提取量可达17.22mg/g,提取量较高。结论:这种方法可以避免多酚在较高温度下的分解,且优化后提取率较高,可以用于葡萄籽多酚的提取。 相似文献
2.
3.
4.
为了研究超声波辅助提取蚕豆多酚的最佳工艺条件,在单因素实验的基础上,选取乙醇体积分数、料液比、提取时间、pH为自变量,多酚提取量为响应值,根据Box-Benhnken实验设计原理,采用四因素三水平的分析法对蚕豆多酚提取量进行优化。结果表明,超声波辅助提取蚕豆多酚的最佳工艺条件为:乙醇体积分数45%、料液比1:25 (g/mL)、提取时间20 min、pH5,此条件下蚕豆多酚提取量最高为(2.03±0.16) mg/g d.w.,与预测值(2.06±0.23) mg/g d.w.相近,说明该优化方法合理可行。 相似文献
5.
以野木瓜为原料,采用响应面法优化超声波辅助提取野木瓜多酚的工艺条件。在单因素实验的基础上,采用Box-Behnken设计,对超声时间、超声温度、丙酮体积分数、料液比等工艺参数进行优化。结果表明,野木瓜多酚提取的最佳工艺条件为超声时间20min,超声温度63℃,丙酮体积分数58%,料液比1∶20(g/m L)。经验证,该条件下野木瓜多酚的得率为8.402mg/g,与预测值8.426mg/g的相对误差为0.3%。该法所得的优化提取条件工艺参数可靠,可行性强,可为野木瓜中多酚产品的开发利用提供科学依据。 相似文献
6.
目的探究超声耦合双水相法提取香菇柄中多酚类物质的最佳工艺。方法采用超声耦合双水相法对香菇柄中多酚进行提取,探讨硫酸铵质量分数、液料比、超声时间、超声功率对多酚含量的影响,在单因素试验的基础上,设计响应面优化试验,确定最佳提取工艺。结果各因素对多酚含量的影响由大到小依次为:超声功率硫酸铵质量分数液料比超声时间。超声耦合双水相法提取香菇柄中多酚的最佳工艺为:超声功率125 W,硫酸铵质量分数40 g/100 m L,液料比30:1(m L/g),超声时间40 min。在此条件下,提取的多酚含量预测值为31.746 mg/g,试验值为(31.746±0.008)mg/g,试验值与预测值基本相符。结论超声耦合双水相法提取条件温和、操作简单,与传统乙醇浸提法相比,不仅节约提取时间,还能提高多酚含量达60%,适于香菇柄中多酚类物质的提取研究。 相似文献
7.
以木槿花为原料,利用响应面法对提取木槿花多酚的工艺条件进行优化。在单因素实验的基础上,以超声功率、超声时间、料液比、乙醇体积分数为影响因素,利用Box-Behnken中心组合方法进行4因素3水平实验设计,以多酚得率为响应值进行响应面分析。结果表明,最优提取条件是:超声功率112 W,时间49 min,料液比1∶36(g/m L),乙醇体积分数69%,在此条件下木槿花多酚得率达20.507 mg/g,与理论值20.518 mg/g相近,比用乙醇溶液浸提的多酚得率提高12.91%;超声波辅助法提取木槿花多酚简便、提取率高,回归模型合理可靠,可用于实际预测。 相似文献
8.
以燕麦为实验材料,在单因素的基础上,以乙醇体积分数、温度、料液比、提取时间等因素为自变量,多酚得率为响应值,通过Box-Behnken实验设计的方法,研究各自变量及其交互作用对多酚得率的影响,采用响应面分析法,模拟得到二次多项式回归方程的预测模型,确定燕麦总多酚的最佳提取工艺参数为:乙醇体积分数60%,温度39℃,液料比14∶1,提取时间59min。验证实验结果显示,此条件下燕麦粗多酚提取得率为4.59%。 相似文献
9.
响应面法优化冬瓜皮多酚提取工艺 总被引:1,自引:0,他引:1
利用响应面法优化冬瓜皮多酚提取的最佳工艺条件。在单因素试验的基础上,根据BoxBehnken试验设计原理,选取液料比、提取温度、提取时间以及乙醇体积分数四因素三水平进行中心点组合试验,并建立二次多项回归方程预测模型,确定多酚提取的最佳工艺条件。结果表明,液料比73∶1、提取温度70℃、提取时间87min、乙醇体积分数70%,该条件下多酚含量实际测量值为6.32mg/g,与理论预测值无显著性差异。因此,采用响应面分析法优化冬瓜皮多酚提取工艺稳定可行,为冬瓜皮的开发利用提供了理论依据。 相似文献
10.
11.
12.
采用超声辅助提取草莓中花青素,并利用响应面分析法(RSM)对草莓花青素的提取工艺进行优化,在单因素实验基础上选取实验因素与水平,根据中心组合(Box-Behnken)实验设计原理采用四因素三水平的响应面分析法对各个因素的显著性和交互作用进行分析,结果表明,料液比对草莓花青素提取量影响最为显著,草莓花青素提取的最优工艺条件为超声功率90W、超声时间14min、料液比1:16、提取温度44℃,在此条件下,花青素提取量实际可达1657.3μg/g,与理论值(1737.3μg/g)基本一致。 相似文献
13.
采用超声波辅助提取猕猴桃果皮多酚,并利用响应面法对多酚提取工艺进行优化。在单因素实验的基础上,采用四因素三水平的响应面实验优化设计,研究超声波功率、提取时间、提取温度、液料比对多酚提取量的影响。结果显示最佳提取工艺条件为:超声波功率384.00 W,提取时间30 min,提取温度65.00℃,液料比23.00 m L/g,多酚提取量的实验值为(28.10±0.38)mg GAE/g,与理论预测值(28.14 mg GAE/g)相差不大。通过体外1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)自由基清除力测定多酚的抗氧化性,并且得到猕猴桃果皮多酚的EC50值为0.13 mg/m L,说明提取的多酚具有很好的抗氧化性。 相似文献
14.
为研究白薇抑菌物质的提取工艺条件,实验以白薇为原料,意大利青霉菌为供试菌,抑菌圈直径为指标,采用超声波辅助浸提白薇抑菌物质。在单因素实验基础上,研究响应面分析法(Response Surface Methodology,RSM)优化超声波辅助提取白薇抑菌物质的工艺参数。结果表明:白薇抑菌物质的最佳提取工艺为乙醇浓度50%,浸提时间2 h,液料比31,浸提温度69℃,在此条件下,白薇提取液对意大利青霉抑菌圈直径达到40.58 mm,与理论最优值40.81 mm接近。 相似文献
15.
响应面法优化藜麦多酚提取工艺的研究 总被引:1,自引:0,他引:1
为优化藜麦多酚提取工艺,以内蒙古种植的藜麦为实验材料,多酚得率为考察指标,研究乙醇浓度、料液比、提取温度和提取时间四个因素对藜麦多酚得率的影响。在单因素实验基础上,通过Box-Behnken实验设计方案优化藜麦多酚的最佳提取条件。实验结果表明,藜麦多酚的最佳提取工艺条件为:乙醇浓度49%,料液比1∶26(g/m L),提取温度73℃,提取时间62 min。在此条件下,藜麦多酚得率为(226.77±1.94)mg/100 g,优化后的提取工艺对藜麦多酚的提取有一定的指导意义。 相似文献
16.
17.
响应面法优化火棘果中多酚提取工艺 总被引:1,自引:0,他引:1
以火棘果为原料,乙醇溶液为溶剂提取其中的多酚类化合物。通过对火棘果多酚提取的单因素试验,并根据Box-Behnken的中心组合试验设计原理,进行3因素3水平的响应面分析试验,得出火棘果中多酚的最佳提取条件为:乙醇体积分数70%,提取温度70 ℃,料液比1∶20(g∶mL),提取时间4.0 h,提取次数3次。在此条件下进行3次验证试验,得出火棘果多酚提取率的平均值为2.84%,与回归方程得出的理论数值2.85%基本相符。该研究为大别山区火棘果资源的综合利用提供了理论依据。 相似文献
18.
利用响应面法对杨桃总多酚的超声提取工艺进行优化。以杨桃为原料,总多酚提取得率为评价指标,在单因素实验的基础上,选取超声时间、乙醇浓度、液料比、超声温度进行了四因素三水平的Box-Behnken中心组合研究,并运用Design Expert 8.05b软件对实验数据进行分析。结果表明,最佳超声提取工艺条件为:超声时间为31 min,乙醇浓度为59%,液料比为53∶1 m L/g,超声温度为60℃,此时杨桃总多酚提取得率为28.5 mg/g。与响应面预测值相比,验证实验结果吻合性良好。 相似文献