首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Previous studies of the primate cerebral cortex have shown that neurofilament protein is present in pyramidal neuron subpopulations displaying specific regional and laminar distribution patterns. In order to characterize further the neurochemical phenotype of the neurons furnishing feedforward and feedback pathways in the visual cortex of the macaque monkey, we performed an analysis of the distribution of neurofilament protein in corticocortical projection neurons in areas V1, V2, V3, V3A, V4, and MT. Injections of the retrogradely transported dyes Fast Blue and Diamidino Yellow were placed within areas V4 and MT, or in areas V1 and V2, in 14 adult rhesus monkeys, and the brains of these animals were processed for immunohistochemistry with an antibody to nonphosphorylated epitopes of the medium and heavy molecular weight subunits of the neurofilament protein. Overall, there was a higher proportion of neurons projecting from areas V1, V2, V3, and V3A to area MT that were neurofilament protein-immunoreactive (57-100%), than to area V4 (25-36%). In contrast, feedback projections from areas MT, V4, and V3 exhibited a more consistent proportion of neurofilament protein-containing neurons (70-80%), regardless of their target areas (V1 or V2). In addition, the vast majority of feedback neurons projecting to areas V1 and V2 were located in layers V and VI in areas V4 and MT, while they were observed in both supragranular and infragranular layers in area V3. The laminar distribution of feedforward projecting neurons was heterogeneous. In area V1, Meynert and layer IVB cells were found to project to area MT, while neurons projecting to area V4 were particularly dense in layer III within the foveal representation. In area V2, almost all neurons projecting to areas MT or V4 were located in layer III, whereas they were found in both layers II-III and V-VI in areas V3 and V3A. These results suggest that neurofilament protein identifies particular subpopulations of corticocortically projecting neurons with distinct regional and laminar distribution in the monkey visual system. It is possible that the preferential distribution of neurofilament protein within feedforward connections to area MT and all feedback projections is related to other distinctive properties of these corticocortical projection neurons.  相似文献   

2.
The development of both long-range intracortical and interhemispheric connections depends on visual experience. Previous experiments showed that in strabismic but not in normal cats, clustered horizontal axon projections preferentially connect cell groups activated by the same eye. This indicates that there is selective stabilization of fibers between neurons exhibiting correlated activity. Extending these experiments, we investigated in strabismic cats: (1) whether tangential connections remain confined to columns of similar orientation preference within the subsystems of left and right eye domains; and (2) whether callosal connections also extend predominantly between neurons activated by the same eye and preferring similar orientations. To this end, we analyzed in strabismic cats the topographic relationships between orientation preference domains and both intrinsic and callosal connections of area 17. Red and green latex microspheres were injected into monocular iso-orientation domains identified by optical imaging of intrinsic signals. Additionally, domains sharing the ocular dominance and orientation preference of the neurons at the injection sites were visualized by 2-deoxyglucose (2-DG) autoradiography. Quantitative analysis revealed that 56% of the retrogradely labeled cells within the injected area 17 and 60% of the transcallosally labeled neurons were located in the 2-DG-labeled iso-orientation domains. This indicates: (1) that strabismus does not interfere with the tendency of long-range horizontal fibers to link predominantly neurons of similar orientation preference; and (2) that the selection mechanisms for the stabilization of callosal connections are similar to those that are responsible for the specification of the tangential intrinsic connections.  相似文献   

3.
1. To understand the structural basis of the different types of interhemispheric synchronizations described in the preceding paper, we made sections of the corpus callosum and lesions of extrastriate cortex. We measured the effects of such operations on the frequency of encounter, width and strength of T, C, and H peaks in cross-correlation histograms computed from single-unit and multiunit recordings from areas 17-18 of opposite cortical hemispheres in the cat. 2. Sectioning of the corpus callosum led to a complete abolition of T and C couplings and a strong reduction of encounter rate and strength of H coupling. A section limited to the posterior half of the corpus callosum abolished T and C couplings completely. This suggests that T and C couplings are mediated by the direct reciprocal connections between visual cortical areas circulating through the posterior part of the corpus callosum. 3. The encounter rate of H peaks depended on the extent of the callosal cut. Larger lesions gave a more pronounced reduction of the number of H peaks. From this observation we conclude that H peaks are at least partially mediated by polysynaptic pathways involving widely distributed cortical regions. 4. Extensive lesions of extrastriate cortex were made by aspiration of the gray matter or injections of ibotenic acid. These lesions removed the direct inputs from cortical areas sending ipsilateral as well as contralateral inputs to the area 17-18 border region. Encounter rate and coupling strength of C and H peaks were decreased, whereas little effect was observed on T peaks. 5. These results demonstrate that all types of interhemispheric synchronization are mediated by corticocortical connections and that T and C peaks are generated by reciprocal connections between areas 17 and 18 of each hemisphere. Feedback connections play a role in mediating or facilitating the C and H types of interhemispheric synchronization.  相似文献   

4.
Phenylketonuria (PKU) is a genetic disorder of amino acid metabolism that is associated with brain catecholamine depletion and deficient myelination. Although neuropsychological deficits have been documented in children with early-treated PKU (ETPKU), no study to date has examined possible effects of impaired myelination in this population. In the present study, interhemispheric transfer time was assessed for 14 children with ETPKU, 22 children with attention deficit-hyperactivity disorder, and 48 normal children, using a manual reaction time paradigm previously validated with callosal agenesis patients (Milner, 1982). Children with ETPKU demonstrated slowed interhemispheric transfer from the left to the right hemisphere as compared with the two other groups. The magnitude of slowing was correlated with age and phenylalanine levels at birth. Results support the hypothesis that abnormal myelination disrupts the development of interhemispheric connections in ETPKU, and suggest that left hemisphere projections may be particularly susceptible to such disruption.  相似文献   

5.
The interhemispheric connections of somatosensory cortex in the gray-headed flying fox (Pteropus poliocephalus) were examined. Injections of anatomical tracers were placed into five electrophysiologically identified somatosensory areas: the primary somatosensory area (SI or area 3b), the anterior parietal areas 3a and 1/2, and the lateral somatosensory areas SII (the secondary somatosensory area) and PV (pairetal ventral area). In two animals, the hemisphere opposite to that containing the injection sites was explored electrophysiologically to allow the details of the topography of interconnections to be assessed. Examination of the areal distribution of labeled cell bodies and/or axon terminals in cortex sectioned tangential to the pial surface revealed several consistent findings. First, the density of connections varied as a function of the body part representation injected. For example, the area 3b representation of the trunk and structures of the face are more densely interconnected than the representation of distal body parts (e.g., digit 1, D1). Second, callosal connections appear to be both matched and mismatched to the body part representations injected in the opposite hemisphere. For example, an injection of retrograde tracer into the trunk representation of area 3b revealed connections from the trunk representation in the opposite hemisphere, as well as from shoulder and forelimb/wing representations. Third, the same body part is differentially connected in different fields via the corpus callosum. For example, the D1 representation in area 3b in one hemisphere had no connections with the area 3b D1 representation in the opposite hemisphere, whereas the D1 representation in area 1/2 had relatively dense reciprocal connections with area 1/2 in the opposite hemisphere. Finally, there are callosal projections to fields other than the homotopic, contralateral field. For example, the D1 representation in area 1/2 projects to contralateral area 1/2, and also to area 3b and SII.  相似文献   

6.
This report addresses the connectivity of the cortex occupying middle to dorsal levels of the anterior bank of the parieto-occipital sulcus in the macaque monkey. We have previously referred to this territory, whose perimeter is roughly circumscribed by the distribution of interhemispheric callosal fibres, as area V6, or the 'V6 complex'. Following injections of wheatgerm agglutinin conjugated to horseradish peroxidase (WGA-HRP) into this region, we examined the laminar organization of labelled cells and axonal terminals to attain indications of relative hierarchical status among the network of connected areas. A notable transition in the laminar patterns of the local, intrinsic connections prompted a sub-designation of the V6 complex itself into two separate areas, V6 and V6A, with area V6A lying dorsal, or dorsomedial to V6 proper. V6 receives ascending input from V2 and V3, ranks equal to V3A and V5, and provides an ascending input to V6A at the level above. V6A is not connected to area V2 and in general is less heavily linked to the earliest visual areas; in other respects, the two parts of the V6 complex share similar spheres of connectivity. These include regions of peripheral representation in prestriate areas V3, V3A and V5, parietal visual areas V5A/MST and 7a, other regions of visuo-somatosensory association cortex within the intraparietal sulcus and on the medial surface of the hemisphere, and the premotor cortex. Subcortical connections include the medial and lateral pulvinar, caudate nucleus, claustrum, middle and deep layers of the superior colliculus and pontine nuclei. From this pattern of connections, it is clear that the V6 complex is heavily engaged in sensory-motor integration. The specific somatotopic locations within sensorimotor cortex that receive this input suggest a role in controlling the trunk and limbs, and outward reaching arm movements. There is a secondary contribution to the brain's complex oculomotor circuitry. That the medial region of the cortex is devoted to tightly interconnected representations of the sensory periphery, both visual and somatotopic-which are routinely stimulated in concert-would appear to be an aspect of the global organization of the cortex which must facilitate multimodal integration.  相似文献   

7.
Pyramidal neurons in superficial layers of cerebral cortex have extensive horizontal axons that provide a substrate for lateral interactions across cortical columns. These connections are believed to link functionally similar regions, as suggested by the observation that cytochrome-oxidase blobs in the monkey primary visual cortex (V1) are preferentially connected to blobs and interblobs to interblobs. To better understand the precise relationship between horizontal connections and blobs, we intracellularly labeled 20 layer 2/3 pyramidal neurons in tangential living brain slices from V1 of macaque monkeys. The locations of each cell body and the cell's synaptic boutons relative to blobs were quantitatively analyzed. We found evidence for two cell types located at characteristic distances from blob centers: (1) neurons lacking long-distance, clustered axons (somata 130-200 microm from blob centers) and (2) cells with clustered, long-distance axon collaterals (somata < 130 microm or >200 microm from blob centers). For all cells, synaptic boutons close to the cell body were located at similar distances from blob centers as the cell body. The majority of boutons from cells lacking distal axon clusters were close to their cell bodies. Cells located more than 200 microm from blob centers were in interblobs and had long-distance clustered axon collaterals selectively targeting distant interblob regions. Cells located less than 130 microm from blob centers were found within both blobs and interblobs, but many were close to traditionally defined borders. The distant synaptic boutons from these cells were generally located relatively near to blob centers, but the neurons closest to blob centers had synaptic boutons closer to blob centers than those farther away. There was not a sharp transition that would suggest specificity for blobs and interblobs as discrete, binary entities. Instead they appear to be extremes along a continuum. These observations have important implications for the function of lateral interactions within V1.  相似文献   

8.
The relations between the inputs from the presubiculum and the parasubiculum and the cells in the entorhinal cortex that give rise to the perforant pathway have been studied in the rat at the light microscopical level. Projections from the presubiculum and the parasubiculum were labeled anterogradely, and, in the same animal, cells in the entorhinal cortex that project to the hippocampal formation were labeled by retrograde tracing and subsequent intracellular filling with Lucifer Yellow. The distribution and the number of appositions between the afferent fibers and hippocampal-projection neurons in the various layers of the entorhinal cortex were analyzed. The results show that layers I-IV of the entorhinal cortex contain neurons that give rise to projections to the hippocampal formation. The morphology of these projection neurons is highly variable and afferents from the presubiculum and the parasubiculum do not show a preference for any specific morphological cell type. Both inputs preferentially innervate the dendrites of their target cells. However, presubicular and parasubicular projections differ with respect to the layer of entorhinal cortex they project to. The number of appositions of presubicular afferents with cells that have their cell bodies in layer III of the entorhinal cortex is 2-3 times higher than with cells in layer II. In contrast, afferents from the parasubiculum form at least 2-3 times as many synapses on the dendrites of cells located in layer II than on neurons that have their cell bodies in layer III. Cells in layers I and IV of the entorhinal cortex receive weak inputs from the presubiculum and parasubiculum. Not only is the presubiculum different from the parasubiculum with respect to the distribution of projections to the entorhinal cortex, they also differ in their afferent and efferent connections. In turn, cells in layer II of the entorhinal cortex differ in their electrophysiological characteristics from those in layer III. Moreover, layer II neurons give rise to the projections to the dentate gyrus and field CA3/CA2 of the hippocampus proper, and cells in layer III project to field CA1 and the subiculum. Therefore, we propose that the interactions of the entorhinal-hippocampal network with the presubiculum are different from those with the parasubiculum.  相似文献   

9.
Following stroke-like lesions to the sensorimotor cortex in rats, experience with the ipsi-to-lesion (ipsilesional), “nonparetic”, forelimb worsens deficits in the contralesional, “paretic”, forelimb. We tested whether the maladaptive effects of experience with the nonparetic limb are mediated through callosal connections and the contralesional sensorimotor cortex. Adult male rats with proficiency in skilled reaching with their dominant (for reaching) forelimb received ischemic bilateral sensorimotor cortex lesions, or unilateral lesions, with or without callosal transections. After assessing dominant forelimb function (the paretic forelimb in rats with unilateral lesions), animals were trained with their nonparetic/nondominant forelimb or underwent control procedures for 15 days. Animals were then tested with their paretic/dominant forelimb. In animals with unilateral lesions only, nonparetic forelimb training worsened subsequent performance with the paretic forelimb, as found previously. This effect was not found in animals with both callosal transections and unilateral lesions. After bilateral lesions, training the nondominant limb did not worsen function of the dominant limb compared with controls. Thus, the maladaptive effects of training the nonparetic limb on paretic forelimb function depend upon the contralesional cortex and transcallosal projections. This suggests that this experience-dependent disruption of functional recovery is mediated through interhemispheric connections of the sensorimotor cortex. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

10.
The modular organization of cortical pathways linking visual area 4 (V4) with occipital visual area 2 (V2) and inferotemporal posterior inferotemporal ventral area (PITv) was investigated through an analysis of the patterns of retrogradely labeled cell bodies after injections of tracers into V4 and PITv. Although cytochrome oxidase or other stains have failed to yield reliable independent anatomical markers for cortical modules beyond V1 and V2, V4 and PITv seem to have modular compartments with specific patterns of cortico-cortical connectivity. Tracer injections of V4 labeled cells in V2 (1) thin stripes exclusively, (2) interstripes exclusively, or (3) specific combinations of interstripe and thin stripe subcompartments. These labeling patterns suggest (1) that there is a complicated organization of inputs to V4, (2) that projections from V2 to V4 display a submodular selectivity, and (3) that projections from V2 to V4 display some degree of cross-stream convergence. Consistent with this framework, extensive regions of PITv provide feedback projections to interstripe-recipient portions of V4, whereas more restricted portions of PITv provide feedback to thin stripe-recipient portions of V4. Similarly, the feedforward projection from V4 to PITv often arose from multiple cell clusters across a wide expanse of V4. When distinguishable fluorescent tracers were injected into two PITv sites separated by 3-5 mm, a variety of projection patterns was observed in V4. In most cases, labeled cells were found in multiple, interdigitating, nonoverlapping clusters of 1-3 mm width, whereas in other cases the two labeled fields were highly intermixed. These results suggest that V4 and PITv contain functional modules that can be characterized by the specific patterns of segregated and convergent projections they receive from lower cortical areas. These specific patterns of intercortical input, in conjunction with intrinsic cortical circuitry, may endow extrastriate cortical neurons with new and more complex receptive field properties.  相似文献   

11.
A single visual stimulus activates neurons in many different cortical areas. A major challenge in cortical physiology is to understand how the neural activity in these numerous active zones leads to a unified percept of the visual scene. The anatomical basis for these interactions is the dense network of connections that link the visual areas. Within this network, feedforward connections transmit signals from lower-order areas such as V1 or V2 to higher-order areas. In addition, there is a dense web of feedback connections which, despite their anatomical prominence, remain functionally mysterious. Here we show, using reversible inactivation of a higher-order area (monkey area V5/MT), that feedback connections serve to amplify and focus activity of neurons in lower-order areas, and that they are important in the differentiation of figure from ground, particularly in the case of stimuli of low visibility. More specifically, we show that feedback connections facilitate responses to objects moving within the classical receptive field; enhance suppression evoked by background stimuli in the surrounding region; and have the strongest effects for stimuli of low salience.  相似文献   

12.
Corticocortical pathways can be classified as feedback and feedforward, in part according to the laminar distribution of the parent cell bodies. Here, we have developed exhaustive sampling procedures to determine unambiguously this laminar distribution. This shows that individual extrastriate areas in the adult cat have highly stereotyped proportions of supragranular layer neurons with respect to the total population of neurons back-projecting to area 17. During development, these adult laminar patterns emerge from an initially uniform radial distribution through a process of selective reorganization, which is highly specific to each area. Injections of fluorescent retrograde tracers were made in area 17. In areas 19, 20, posteromedial lateral suprasylvian area, and anteromedial lateral suprasylvian area, we defined a projection zone as the region containing retrogradely labeled neurons. In the neonate, counts of labeled neurons throughout the projection zones show constant percentages of 40% in the supragranular layers. During development, there is an area-specific reduction in the percentage of supragranular labeled neurons generating the laminar distributions characteristic of each area. Numbers of labeled neurons were estimated at different eccentricities of the projection zone. This finding indicates that during development there is a relative decrease in the numbers of labeled neurons of the periphery of the projection zone in the supragranular layers but not in the infragranular layers. This decrease is accompanied by a relative decrease in the dimensions of the supragranular projection zone with respect to the infragranular projection zone. These findings suggest that each extrastriate area precisely adjusts the proportions of supragranular layer neurons back-projecting to striate cortex in part by developmental changes in the divergence-convergence values of individual neurons. This shaping of corticocortical connectivity occurs relatively late in postnatal development and could, therefore, be under epigenetic control.  相似文献   

13.
Neuronal properties and topographic organization of the middle suprasylvian gyrus (cortical cytoarchitectonic field 7) were studied in three behaving cats with painlessly fixed heads. Two main neuronal types were found within this field. Type 1 neurons occupied the lateral part of the field and bordered representation of directionally selective neurons of the lateral suprasylvian visual area by vertical retinal meridian. Type 1 neurons had elongated and radially oriented receptive fields located in the lower part of contralateral visual field. Type 1 neurons preferred stimuli moving out or to the centre of gaze at a low or moderate speed, and many of them were depth selective. The responses were enhanced by attention, oriented to the presented stimulus. Medial part of the field 7 along the border with the area V3 was occupied by neurons with not elongated receptive fields (type 2). These neurons preferred moderate and high speeds of motion, and gratings of proper spatial frequency and orientation were effective stimuli for them. Border between representations of type 2 and type 1 neurons coincided with projection of horizontal retinal meridian. At the rostral and caudal borders of the field 7 abrupt changes of neuronal properties took place. Neurons which abutted field 7 anteriorly and posteriorly resembled hypercomplex cells and their small receptive fields were located in the central part of the visual field. Topographical considerations and receptive field properties allowed us to conclude that the medial part of the field 7 (included type 2 neurons) is functionally equivalent to the area V4 in the cortex of primates, while the lateral part (type 1 neurons) may correspond to the area V4T.  相似文献   

14.
Neural crest-derived cells acquire a 110-kD laminin-binding protein (LBP110) when they colonize the murine bowel. Laminin stimulates LBP110-expressing cells to develop as neurons. We have followed the development of LBP110 by neural crest-derived cells as they enter the gut of control and ls/ls mutant mice. The expression of neurofilament and choline acetyltransferase was used as markers of a neuronal phenotype. Tyrosine hydroxylase was used as a marker for the mash-1-dependent lineage of enteric precursors, while calcitonin gene-related peptide was used as a marker for the mash-1-independent lineage of crest-derived cells. A subset of cells expressing LBP110 was located along the vagi at E10 at cervical and thoracic levels. At E12, cells expressing LBP110 extended from the foregut to the midgut. The expression of neurofilament protein lagged behind that of LBP110 by about 0.5 day and then became coincident with LBP110 immunoreactivity. By E15, cells doubly labeled with antibodies to LBP110 and neurofilament protein were located along the entire extent of the bowel up to but not including the terminal colon. By E16, both the proximal and terminal colon contained cells expressing LBP110 and neurofilaments. The pattern of immunoreactivity could not be distinguished between ls/ls and control animals prior to E16. By E16, when the terminal colon of control animals contained many cells expressing LBP110 and neurofilaments, the terminal colon of ls/ls animals lacked cells expressing these proteins; nevertheless, structures outside of the terminal colon were heavily endowed with cells expressing LBP110 and neurofilaments. These ectopically located cells derived from both mash-1-dependent and -independent lineages of crest-derived precursors.  相似文献   

15.
BACKGROUND/AIMS: Recent studies with neurofilament antibodies as neuronal markers have shown subpopulations of myenteric neurons that do not contain neurofilament proteins. Novel neuronal intermediate filament proteins alpha-internexin, peripherin, and nestin have been identified. The aim of this study was to examine the distribution of these novel intermediate filaments in comparison with neurofilaments in myenteric plexus neurons. METHODS: Using indirect immunofluorescence techniques in whole-mount cryostat sections from neonate and adult rat small intestine and in primary cultures of myenteric neurons, the distribution of neurofilaments, alpha-internexin, peripherin, and nestin was studied in comparison with the neuronal marker protein gene product (PGP) 9.5 in myenteric neurons. RESULTS: Sixty-five percent of neurons contained neurofilament triplet proteins. alpha-Internexin and/or peripherin were found in the neurofilament-negative neurons. PGP 9.5 was present in 80% of the myenteric neurons. Of the neurons that were PGP negative, > 95% contained peripherin or alpha-internexin. Nestin was not found in either neonate or adult myenteric neurons but was seen in glial cells in culture. CONCLUSIONS: The results suggest that a subpopulation of myenteric neurons lacks neurofilament triplet proteins but contains either peripherin, alpha-internexin, or both. This selective distribution of intermediate filaments in subpopulations of enteric neurons may support differential roles in these structurally unique neurons.  相似文献   

16.
Results obtained in studies of the high-frequency components of EEG recordings and in modeling, determining the conditions for the appearance of gamma oscillations in interneuronal interactions, were compared with features of the background gamma oscillations recorded in the activity of interacting neurons located in symmetrical loci of the right and left hemisphere motor areas in anesthetized rats. Similarities in high frequencies extracted from EEG recordings and in the most commonly observed gamma oscillation frequencies suggested that these oscillations may represent one of the mechanisms underlying the high-frequency EEG component. Published modeling data indicating that the formation of these oscillations involves reciprocal inhibitory connections, along with our own data that interhemisphere oscillations are seen 1.5 times more commonly than ipsilateral oscillations, suggested that transcallosal inhibition is more effective than inhibition between neighboring cells. Simultaneously extracted background oscillations in the interacting activity of callosal cells and neighboring cells could be different, as could those characterizing the activity of individual neurons. It is suggested that these differences underlie the functional heterogeneity of local cortical neuronal networks and explain the fact that these networks contain various types of inhibitory neurons.  相似文献   

17.
Anodic polarization of the parastriate area in the right hemisphere causes in symmetric regions of cat's visual cortex dynamic changes in EPs, interhemispheric functional asymmetry and interhemispheric relations, depending on the intensity of photic stimulation. The sequence of phases of interhemispheric callosal relations and characteristics of interaction between callosal and extracallosal influences were traced in different periods of polarization excitation. It was found that interhemispheric callosal and extracallosal influences lead either to stabilization of initial EP levels and interhemispheric asymmetry or to their change depending on conditions of photostimulation and on the stage in the formation of polarization site.  相似文献   

18.
The mammalian superior colliculus is involved in the transformation of sensory signals into orienting behaviors. Sensory and motor signals are integrated in the colliculus to produce movements of the eyes, head, and neck. While there is a considerable amount of information available on the afferent and efferent connections of the colliculus, almost nothing is known about its intrinsic circuitry, particularly that of its deepest layers. It is likely that intrinsic connections in these deeper layers of the colliculus participate in the sensory-motor transformations leading to orienting movements. In this study, we used the neuroanatomical tracer biocytin to label small groups of neurons in the deeper layers of the cat superior colliculus and examine the distribution of their axons and terminals. We found a broadly distributed network of intrinsic projections throughout the deep layers of the superior colliculus. While the majority of terminals were found in a 1-2 mm radius around the injection site, labeled terminals were found throughout the deep layers of the colliculus up to 5 mm from the injection site. In addition, these injections sometimes labeled terminals in the superficial tectum. Extensive projections were demonstrated by the more superficial injections, but few terminals were found when injections were confined to the deepest layers of the colliculus. There was no evidence of anisotropy in the distribution of terminals from injections made at different rostrocaudal or mediolateral locations; neurons located in any one region in the colliculus could potentially influence any other region. This network of intrinsic connections in the cat superior colliculus could provide a means for deeper-layer efferent neurons to associate, and to modulate or coordinate their output. Interneurons could also provide a substrate for mutual inhibition between neurons at the rostral pole of the colliculus that are active during fixation, and more caudally located neurons whose activity is associated with saccadic eye movements.  相似文献   

19.
Sympathetic preganglionic neurons of the chick are located between the brachial and lumbosacral enlargements of the spinal cord. Their axons exit the spinal cord via their adjacent ventral roots and project rostrally or caudally along the sympathetic trunk to innervate sympathetic ganglia. The projections of sympathetic preganglionic neurons are segmentally specific. Neurons from the 16th cervical (C16) and the first thoracic (T1) spinal cord segments project predominantly in the rostral direction, whereas those from the fifth thoracic (T5) to the first lumbar (L1) spinal segments project predominantly in the caudal direction. Neurons from intervening spinal cord segments (T2-T4) project in rostral and caudal directions. In the present study, neural tube manipulations show that the direction of preganglionic projections is altered by both the elimination and addition of preganglionic neurons projecting into the sympathetic trunk from neighboring segments. The present study also compares the projections of preganglionic neurons from transplants of multiple neural tube segments with those from transplants of single neural tube segments reported in a previous study (Yip, 1987). In the previous study when single thoracic neural tube segments were transplanted to the cervical level, preganglionic neurons did not maintain their original projection patterns. The present study found that, when contiguous neighboring segments were transplanted to the cervical level, preganglionic neurons maintained projection patterns characteristic of their original segmental levels. These results indicate that the direction of preganglionic projections can be influenced by neurons from neighboring segments, suggesting that the formation of segmentally specific preganglionic projections during embryogenesis may involve the interactions of preganglionic neurons with those from neighboring spinal cord segments.  相似文献   

20.
Fetal hippocampal cells grafted into the excitotoxically lesioned hippocampus of adult rats are capable of extending axonal projections into the host brain. We hypothesize that the axonal growth of grafted fetal cells into specific host targets, and the establishment of robust long-distance efferent graft projections, require placement of fetal cells in close proximity to appropriate axon guidance pathways. Intracerebroventricular administration of kainic acid in adult rats leads to a specific loss of hippocampal CA3 pyramidal neurons. We grafted 5'-bromodeoxyuridine-labeled embryonic day 19 hippocampal cells into adult hippocampus at four days post-kainic acid lesion, and quantitatively measured the projection of grafted cells into the contralateral hippocampus and the septum after three to four months survival using Fluoro-Gold and 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine (Dil) tracing. Grafts located in or near the degenerated CA3 cell layer exhibited numerous neurons which established commissural projections with the contralateral hippocampus. However, such projection did not occur in intrahippocampal grafts located away from the CA3 cell layer. In contrast, neurons in all grafts established robust projections into the septum regardless of location within hippocampus although grafts located near the degenerated CA3 cell layer displayed more neurons with such projections. Location of grafted cells clearly influences the development of efferent graft projections into distant targets in the adult host brain, particularly access to axon guidance pathways to facilitate the formation of projections. The establishment of robust long-distance commissural projections of fetal hippocampal grafts is clearly dependent on their placement in or near the degenerated CA3 cell layer, suggesting that appropriate axon guidance pathways for commissural pathways are tightly focussed near this cell layer. However, the establishment of septal projections of these grafts was not dependent on specific location within the CA3 cell layer, suggesting that axonal guidance mechanisms to the septum are more diffuse and not limited to the CA3 dendritic layers. The results underscore that fetal hippocampal grafts are capable of partly restoring lesioned hippocampal circuitry in adult animals when appropriately placed in the host hippocampus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号