首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stability characteristics of a premixed, swirl-stabilized flame were studied to determine the effects of hydrogen addition on flame stability under fuel-lean conditions. The burner configuration consisted of a centerbody with an annular, premixed methane/air jet introduced through five, 45° swirl vanes. Flame stability was studied over a range of operating conditions. Under fuel-rich conditions the flame was lifted from the burner surface due to the mixing with entrained ambient air that was needed to form a flammable mixture. As the fuel/air mixture ratio was decreased toward stoichiometric, the resulting increase in flame speed allowed the flame to propagate upstream through the low-velocity wake region and attach to the centerbody face. The maximum blowout velocity occurred at stoichiometric conditions, and decreased as the mixture became leaner. OH PLIF measurements were used to study the behavior of OH mole fraction as the lean stability limit was approached. Near the lean stability limit the overall OH mole fraction decreased, the flame decreased in size and the high OH region took on a more shredded appearance. The addition of up to 20% hydrogen to the methane/air mixture resulted in a significant increase in the OH concentration and extended the lean stability limits of the burner.  相似文献   

2.
This paper investigates one issue related to Large Eddy Simulation (LES) of self-excited combustion instabilities in gas-fueled swirled burners: the effects of incomplete mixing between fuel and air at the combustion chamber inlet. Perfect premixing of the gases entering the combustion chamber is rarely achieved in practical applications and this study investigates its impact by comparing LES assuming perfect premixing and LES where the fuel jets are resolved so that fuel/air mixing is explicitely computed. This work demonstrates that the perfect premixing assumption is reasonable for stable flows but is not acceptable to predict self-excited unstable cases. This is shown by comparing LES and experimental fields in terms of mean and RMS fields of temperature, species, velocities as well as mixture fraction pdfs and unsteady activity for two regimes: a stable one at equivalence ratio 0.83 and an unstable one at 0.7.  相似文献   

3.
4.
《Combustion and Flame》1984,57(3):283-288
The blowout limit of a circular jet diffusion flame in a low velocity coflowing stream of air is extended significantly by the introduction of a small amount of some fuel vapor in a surrounding flow. The jet fuels employed were methane or hydrogen, while the coflowing stream contained, in turn, methane, hydrogen, propane, or ethylene. The widening of the flame blowout limit could be correlated to the concentration of the fuel in the surrounding stream relative to the corresponding concentration that caused a flame flashback within the surrounding stream in the presence of the jet flame.Moreover, the blowout limit of the flame of a jet of methane containing significant proportions of a diluent such as nitrogen was also extended markedly by the presence of fuel in the surrounding stream. As expected, when carbon dioxide was the diluent in the central jet instead of nitrogen, relatively higher fuel concentrations were needed in the coflowing stream to provide the same jet blowout velocities.  相似文献   

5.
Upward propagation of a premixed flame in a vertical tube filled with a very lean mixture is simulated numerically using a single irreversible Arrhenius reaction model with infinitely high activation energy. In the absence of heat losses and preferential diffusion effects, a curved flame with stationary shape and velocity close to those of an open bubble ascending in the same tube is found for values of the fuel mass fraction above a certain minimum that increases with the radius of the tube, while the numerical computations cease to converge to a stationary solution below this minimum mass fraction. The vortical flow of the gas behind the flame and in its transport region is described for tubes of different radii. It is argued that this flow may become unstable when the fuel mass fraction is decreased, and that this instability, together with the flame stretch due to the strong curvature of the flame tip in narrow tubes, may be responsible for the minimum fuel mass fraction. Radiation losses and a Lewis number of the fuel slightly above unity decrease the final combustion temperature at the flame tip and increase the minimum fuel mass fraction, while a Lewis number slightly below unity has the opposite effect.  相似文献   

6.
7.
This paper reports the mechanism of hydrogen enrichment in stabilizing swirl/bluff-body CH4/air lean premixed flame. Large Eddy Simulation (LES) coupled with Thickened Flame (TF) model was performed to resolve the turbulent reacting flow. A detailed chemistry was used to describe the oxidization of CH4/H2/air mixtures. Particle Image Velocimetry (PIV) and Planar Laser-Induced Fluorescence of OH (OH-PLIF) simultaneous measurements were conducted to obtain the velocity fields and flame structures respectively. The numerical methods were validated by experimental data and showing good agreements. Both the experimental and numerical results show that, the flame brush attachment tends to leave the inner shear layer with increasing hydrogen addition, which will reduce the risk of flame lift-off. The chemical analyses prove that the attachment of CH4/air flame is inherently weak. On the one hand, the CH4/air flame is stabilized by the hot products inside the recirculation. On the other hand, the burnt gas suppresses the oxidation of H2 and CO through H2 + OH = H + H2O and CO + OH = CO2 + H, respectively. Although the proportion of CH4 decomposition through CH4 + OH = CH3 + H2O will be reduced by hydrogen addition, the path of CH4 + H = CH3 + H2 will be enhanced significantly. Hydrogen addition will not only increase the overall reaction rate, but also change the combustion intensity at the nozzle exit from relatively weak to strong, which is also important for flame stabilization. The robust flame attachment obtained by hydrogen addition can attributed to the enhanced reactions of H2 + OH = H + H2O and CH4 + H = CH3 + H2.  相似文献   

8.
We analyze flame propagation through a homogeneous three-component premixture composed of fuel gas, small fuel droplets, and air. This analytical study is carried out within the framework of a diffusional-thermal model with the simplifying assumption that both fuels—the fuel in the gaseous phase and the gaseous fuel evaporating from the droplets—have the same Lewis number. The parameter that expresses the degree of substitution of spray for gas is δ, the liquid loading, i.e., the ratio of liquid fuel mass fraction to overall fuel mass fraction in the fresh premixture. In this substitution of liquid fuel for gaseous fuel, the overall equivalence ratio is lean and is kept identical. We hence obtain a partially prevaporized spray, for which we analytically study the dynamics of the plane spray-flame front. The investigated model assumes the averaged distance between droplets to be small compared with the premixed flame thickness (i.e., small droplets and moderate pressure). Le, the Lewis number, Ze, the Zeldovich number, and δ are the main parameters of the study. Our stability analysis supplies the stability diagram in the plane {Le,δ} for various Ze values and shows that, for all Le, the plane front becomes unstable for high liquid loading. At large or moderate Lewis number, we show that the presence of droplets substantially diminishes the onset threshold of the oscillatory instability, making the appearance of oscillatory propagation easier. Oscillations can even occur for Le<1 when sufficient spray substitution is operated. The pulsation frequency occurring in this regime is a tunable function of δ. At low Lewis number, substitution of spray for gas leads to a more complex situation for which two branches can coexist: the first one still corresponding to the pulsating regime, the other one being related to the diffusive-thermal cellular instability.  相似文献   

9.
Lean limit methane/air flame propagating upward in a standard 50 mm diameter and 1.8 m length tube was studied experimentally using particle image velocimetry method. Local stretch rate along the flame front was determined by measured gas velocity distributions. It was found that local stretch rate is maximum at the flame leading point, which is in agreement with earlier theoretical results. Similar to earlier observations, extinction of upward propagating limit flame was observed to start from the flame top. It is stated that the observed behavior of the extinction of the lean limit methane/air flame can not be explained in terms of the coupled effect of flame stretch and preferential diffusion. To qualitatively explain the observed extinction behavior, it is suggested that the positive strain-induced flame stretch increases local radiation heat losses from the flame front. An experimental methodology for PIV measurements in a round tube is described.  相似文献   

10.
In this letter we show that the use of slightly broadband laser sources like multimode alexandrite lasers for CH PLIF bears the danger of interferences from formaldehyde. Such interferences occur when the laser frequency is not carefully tuned to the B-X (0,0) R-branch band head at around 387.2 nm and manifest either in the appearance of an additional layer in the PLIF image or in a slight broadening of the actual CH layer. With careful frequency selection the formaldehyde signals were not observed. Suppression of the interferences is feasible by employing appropriate spectral filters.  相似文献   

11.
The present paper describes a methodology to improve the accuracy of prediction of the eigenfrequencies and growth rates of self-induced instabilities and demonstrates its application to a laboratory-scale, swirl-stabilized, lean-premixed, gas turbine combustor. The influence of the spatial heat release distribution is accounted for using local flame transfer function (FTF) measurements. The two-microphone technique and CH chemiluminescence intensity measurements are used to determine the input (inlet velocity perturbation) and the output functions (heat release oscillation), respectively, for the local flame transfer functions. The experimentally determined local flame transfer functions are superposed using the flame transfer function superposition principle, and the result is incorporated into an analytic thermoacoustic model, in order to predict the linear stability characteristics of a given system. Results show that when the flame length is not acoustically compact the model prediction calculated using the local flame transfer functions is better than the prediction made using the global flame transfer function. In the case of a flame in the compact flame regime, accurate predictions of eigenfrequencies and growth rates can be obtained using the global flame transfer function. It was also found that the general response characteristics of the local FTF (gain and phase) are qualitatively the same as those of the global FTF.  相似文献   

12.
Large-Eddy Simulations (LES) and Direct Numerical Simulation (DNS) are applied to the analysis of a swirl burner operated with a lean methane–air mixture and experimentally studied by Meier et al. [19]. LES is performed for various mesh refinements, to study unsteady and coherent large-scale behavior and to validate the simulation tool from measurements, while DNS enables to gain insight into the flame structure and dynamics. The DNS features a 2.6 billion cells unstructured-mesh and a resolution of less than 100 microns, which is sufficient to capture all the turbulent scales and the major species of the flame brush; the unresolved species are taken into account thanks to a tabulated chemistry approach. In a second part of the paper, the DNS is filtered at several filter widths to estimate the prediction capabilities of modeling based on premixed flamelet and presumed probability density functions. The similarities and differences between spatially-filtered laminar and turbulent flames are discussed and a new sub-grid scale closure for premixed turbulent combustion is proposed, which preserves spectral properties of sub-filter flame length scales. All these simulations are performed with a solver specifically tailored for large-scale computations on massively parallel machines.  相似文献   

13.
This paper reports on numerical and experimental studies of a lean premixed low swirl stabilized methane/air flame. The burner is made up of a central perforated plate and an annular swirler. A premixed methane/air mixture at an equivalence ratio of 0.62 is injected to an ambient co-flow of air through the burner under atmospheric pressure and room temperature condition with a Reynolds number of 30,000. Stereoscopic Particle Image Velocimetry (PIV) and simultaneous OH/acetone Planar Laser Induced Fluorescence (PLIF) are used to characterize the flame front and the turbulence field downstream of the burner. The flame is stabilized in the low speed central region and in the inner shear-layer vortices, where ambient air dilution to the flame is found to eventually quench the reactions downstream. Rotational Coherent Anti-Stokes Raman Spectroscopy (RCARS) measurements are carried out to characterize the temperature field and the relative oxygen mole fraction field, which enables quantification of the air dilution to the flame. The experimental data provides a challenging test case for numerical simulation models owing to the stratification of the mixture and quenching of the flame. Large eddy simulations are carried out using a three-scalar level-set G-equation flamelet model, which is shown to capture the basic flame characteristics and quenching at the trailing edge of the flame.  相似文献   

14.
The flame type studied in this paper is a circumferential-fuel – jet inverse diffusion flame, and the fuel is liquefied petroleum gas enriched with hydrogen gas. Fuel lean flame stability limit regarding to the volumetric percentage of hydrogen and the air jet Reynolds number was investigated. There were three flame stable-related limits examined: local extinction limit, restore limit, and complete extinction limit. Global Energy Consumption Rate of fuel, fuel jet velocity, and overall equivalence ratio of the air/fuel mixture at the three stable-related limits were presented. Experimental results indicate that with hydrogen addition, the inverse diffusion flame can sustain burning with a lower global energy than without it. The most significant stabilization effect was obtained with 30% hydrogen addition for complete extinction limit and 30%–90% for local extinction limit. The corresponding fuel jet velocity at complete extinction limit also decreases with hydrogen addition. However, fuel jet velocities at local extinction limit and restore limit increase significantly, when hydrogen percentage is larger than 70%. Air jet Reynolds number does not show notable influence on Global Energy Consumption Rate or fuel jet velocity at the three stability limits. In addition, overall equivalence ratio, which is an important parameter of inverse diffusion flame combustion dropping dramatically with air jet Reynolds number when it is less than 2000.  相似文献   

15.
An unconfined strongly swirled flow is investigated to study the effect of hydrogen addition on upstream flame propagation in a methane-air premixed flame using Large Eddy Simulation (LES) with a Thickened Flame (TF) model. A laboratory-scale swirled premixed combustor operated under atmospheric conditions for which experimental data for validation is available has been chosen for the numerical study. In the LES-TF approach, the flame front is resolved on the computational grid through artificial thickening and the individual species transport equations are directly solved with the reaction rates specified using Arrhenius chemistry. Good agreement is found when comparing predictions with the published experimental data including the predicted RMS fluctuations. Also, the results show that the initiation of upstream flame propagation is associated with balanced maintained between hydrodynamics and reaction. This process is associated with the upstream propagation of the center recirculation bubble, which pushes the flame front in the upstream mixing tube. Once the upstream movement of the flame front is initiated, the hydrogen-enriched mixture exhibits more unstable behavior; while in contrast, the CH4 flame shows stable behavior.  相似文献   

16.
17.
In this study, the novel conservative representation of chemical explosive mode analysis is augmented to analyze the key flame features in the Burrows-Kurkov flames simulated by both Reynolds-Averaged Navier-Stokes (RANS) and large eddy simulation (LES). Subtle difference are revealed in flame stabilization mechanisms resulting from the difference in modeling and spatial resolution. RANS shows that, ahead of the flame onset location, the composition diffusion and shock wave compression play dominant roles in chemical explosion indicating that the flame is stabilized by the assisted-ignition combustion mode. In contrast, LES shows that the flame is stabilized by the auto-ignition mode since the nonchemical contribution counteracts chemical reaction during the development of ignited flame kernels. For RANS, the radical pool builds up through the unphysical back diffusion near the flame stabilization front, which reveals the limitation of RANS method in the resolution and characterization of the key flame features in Burrows-Kurkov flames.  相似文献   

18.
Laminar flame speeds of lean premixed H2/CO/air mixtures were measured in the counterflow configuration over a wide range of H2 content at lean conditions. The values were determined by extrapolating the referenced flame speed to zero stretch rate using the non-linear extrapolation method to reduce the systematic error. Detailed calculation of laminar flame speed was also conducted using PREMIX code coupled with three different kinetic models. In general, simulation results agreed well with the experimental data. Both the experimental and calculation results revealed that the laminar flame speeds of lean premixed H2/CO/air mixtures increased with H2 content significantly when H2 content was small (?15%) and gradually when H2 content was large (>15%).  相似文献   

19.
《Combustion and Flame》1986,64(2):229-232
In the present paper new results on the combustion of n-octane obtained by molecular beam mass spectrometry in a flat flame are presented. Corresponding experiments on i-octane have been reported [1] and comparisons to that compound are made to explore the different ignition and combustion behaviour of n- and i-octane.  相似文献   

20.
Electric assisted combustion for hydrogen enriched hydrocarbons may even extend the lean burn limit and provide the further improvement on combustion stability. This study investigates the effect of hydrogen enrichment and DC electric field on lean CH4/air flame propagation. Electric field inside the chamber was generated by mesh and needle electrodes. Effect of hydrogen enrichment on the ion mole fraction in the flame was discussed based on reaction mechanism included neutral and ion reactions. The flame propagation images, flame displacement speed were used to evaluate the combined influences of hydrogen enrichment and electric field on propagating flame. Results showed that the hydrogen addition would increase positive ions mole fraction and the peak value is mainly determined by H3O+. This would be due to that CH increases with hydrogen fraction, which is the main species in the initial reaction for the ion reactions. Electric field effect about flame propagation was suppressed with hydrogen addition due to the competition between the increment in ion mole fraction and the decrement in flame time. Electric assisted combustion is more evident at leaner conditions and elevated pressure. The ratio of ionic wind velocity to flow velocity may be the determined factor to predict the electric field effect about propagating flame. The tendency based on this ratio is in accordance with the experimental results for various hydrogen fraction and equivalence ratio at elevated pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号