首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Carbon fiber fabric reinforced plastics were pyrolyzed at temperatures between 900?°C and 1600?°C to convert them into carbon/carbon (C/C) composites. The effects of pyrolysis temperatures on the microstructure, mechanical properties, and especially on the capillary infiltration behavior of C/C composites, suitable for liquid silicon infiltration (LSI), were investigated. The porosity of these C/C composites shows a decreasing trend with increasing pyrolysis temperature. The established model can explains the pyrolysis mechanism and the infiltration behaviors. Within the initial stage, the capillary infiltration rate of C/C composites with the model fluid water increases rapidly. In the second stage, where thermal imaging indicates that water has reached the top area of the plates at the initial stage. Capillary infiltration rate, based on water infiltration experiments mass increase, decreases because the shrinkage of micro-delamination take place at higher pyrolysis temperature. In combination with LSI results, a model for the capillary infiltration behavior of C/C is proposed.  相似文献   

5.
The structures of two types of mesophase pitch-based carbon fibers (M30 and M70) reinforced SiC composites, prepared by the polycarbosilane impregnation-pyrolysis process, were investigated using transmission electron microscopy (TEM). It was found that M70 possessed a highly-ordered graphite structure despite occasional misorientation of some crystallites. However, the skin of M70 was less ordered than the interior of M70. The structure of M30 was uniform throughout, and was less ordered than that of M70. The fiber and matrix in M70/SiC bonded weakly, whereas the fiber and matrix in M30/SiC bonded tightly and locked together. This difference in the interface feature originates from the difference of the surface crystalline structures of M30 and M70, and is formed during the first impregnation-pyrolysis cycle of polycarbosilane.  相似文献   

6.
A high-toughness epoxy has been prepared using carboxyl-terminated butadiene acrylonitrile (CTBN) as a toughening agent to modify the AG-80 epoxy resin. High-performance carbon fiber/epoxy (CF/EP) composites are fabricated using the CTBN-toughened epoxy resin as the matrix and two types of CF, namely, T800SC and T800HB, as reinforcement. The mechanical properties of the matrix, surface properties of the CFs, tensile properties, and fracture morphologies of the composites are systematically investigated to elucidate the key factors influencing interfacial bonding in high-performance CF/EP composites. The results reveal that the most significant improvement in toughness is achieved when the CTBN content is 6.90 wt.% in the epoxy resin. Owing to the high content of polar functional groups and excellent surface wettability of T800SC, the T800SC/EP composite exhibits superior mechanical properties compared with the T800HB/EP composite.  相似文献   

7.
The objective of this work is to study the effect of electrical conductivity and physical‐mechanical properties of carbon black (CB) filled polymer composites. This goal is achieved by synthesizing epoxy/silicon phase separated blend structure of composites filled with CB. The percolation threshold of epoxy/silicone/CB composites decreased and the total conductivity increased compared to the pure epoxy/CB composite. A threefold increase was obtained with tensile strength of epoxy/silicone/CB composite with 25 wt% of silicone and 5 wt% of CB in comparison with epoxy/CB systems. This composite has conductivity of about 10−6 S/cm, which is six orders of magnitude higher than for epoxy/CB composites at the same concentration of CB. POLYM. COMPOS., 35:2234–2240, 2014. © 2014 Society of Plastics Engineers  相似文献   

8.
Nanocrystalline 3Y-TZP and copper-oxide powders were prepared by co-precipitation of metal chlorides and copper oxalate precipitation respectively. CuO (0.8 mol%) doped 3Y-TZP powder compacts were prepared from the nanocrystalline powders. Dilatometer measurements on these compacts were performed to investigate the sintering behaviour. Microstructure investigations of the sintered compacts were conducted. It is found that additions of the copper-oxide powders in the nanocrystalline 3Y-TZP leads to an enhancement of densification, formation of monoclinic zirconia phase and significant zirconia grain growth during sintering.  相似文献   

9.
Carbon/carbon (C/C) composites were prepared from oxidative PAN fiber felts, a resol‐type phenolic resin, and mesophase pitch derived from coal tar. In this study, the effects on mesocarbon microbeads (MCMBs), flexural strength, flexural moduli, electric conductivity, and thermal conductivity of C/C composites with a mesophase content ranging from 0 to 30 wt % were examined during pyrolysis. The results show that the C/C composite with the addition of 10–30 wt % mesophase had a higher density, greater stacking size, and higher preferred orientation than the C/C composites without any mesophase during heat treatment. These composites also exhibited an improvement in flexural strength from 19.7 to 30.3%. The flexural moduli of these composites with mesophase added increased by 15.1 to 31.3% compared to that with no mesophase added. These composites also showed improved electric conductivity, from 15.1 to 43.7%, and thermal conductivity, from 12 to 31.3%. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2178–2190, 2005  相似文献   

10.
Yequn Liu  LianLong He  XueFeng Lu  Peng Xiao 《Carbon》2012,50(7):2424-2430
Introduction of carbon nanofibers (CNFs) into carbon/carbon (C/C) composites is an effective method to improve the mechanical properties of C/C composites. In situ grown CNFs reinforced C/C composites as well as conventional C/C composites without CNFs were fabricated by chemical vapor infiltration. Transmission electron microscopy investigations indicate that the entangled CNFs (30–120 nm) formed interlocking networks on the surface of carbon fibers (CFs). Moreover, a thin high-textured (HT) pyrocarbon (PyC) layer (~20 nm) was deposited on the surface of CFs during the growth of CNFs. We find the microstructure of C/C composites depends strongly on the local distribution density (LDD) of CNFs. In regions of low CNF LDD, a triple-layer structure was formed. The inner layer (attached to CF) is HT PyC (~20 nm), the middle layer (150–200 nm) is composed of HT PyC coated CNFs (HT/CNFs) and medium-textured PyC, and the outmost layer (several microns) is composed of HT/CNFs and micropores. In regions of high CNF LDD, a double-layer structure was formed. The inner layer is HT PyC (~20 nm), and the outer layer is composed of HT/CNFs, isotropic PyC and nanopores. However, only medium-textured PyC and micropores were found in the matrix of the conventional C/C composites.  相似文献   

11.
Carbon/carbon composites (C/Cs) with nanographite platelets (NGP) filler in a matrix derived from phenolic resin were produced. Different weight concentration (0.5, 1.5, 3, 5 wt.%) NGP were introduced by spraying the NGP during the prepreg formation. The NGP-reinforced C/Cs were characterized for effect of NGP concentration on microstructure, porosity, interlaminar shear strength (ILSS), flexural, ultrasonic and vibration damping behavior. At 1.5 wt.% NGP C/C, the highest values of ILSS observed was 10.5 MPa (increased by 22%), flexure strength of 142.4 MPa (increased by 27%), flexural modulus of 59.2 GPa (increased by 68%) and porosity of 18.8% (reduced by 17.5%) in comparison to neat (without NGP) densified C/C. Ultrasonic testing revealed an average increase of 15% through the thickness Young’s modulus of NGP-C/C; (3.12 GPa at 1.5 wt.% NGP). A 20% average decrease in the damping ratio of the first four modes of vibration was observed in 1.5 wt.% NGP densified C/C. At low concentration (⩽1.5 wt.%) the NGP filled in the pores, cracks and debonded interface but at concentration higher than 1.5 wt.% NGP lost their effectiveness due to agglomeration. The required cycles for desired density/properties are projected to be less compared to neat C/C due to less porosity observed in ⩽1.5 wt.% NGP concentration C/C.  相似文献   

12.
《Ceramics International》2022,48(10):13598-13603
Al-doped ZnO (AZO) has emerged as a potential high-temperature thermoelectric material with an appropriate Seebeck coefficient and high thermal stability, and hence is considered as a promising material for power generation applications. Herein, we report the fabrication of AZO/SrTiO3 composites with improved thermoelectric performance. The densification, microstructure, and thermoelectric properties of the AZO/SrTiO3 composites were investigated. The significant increase in the relative density of AZO from 89.1 to 98.0% after the addition of SrTiO3 indicates that SrTiO3 promoted the densification of the composites. Furthermore, the electrical conductivity of AZO increased after the addition of SrTiO3, which can mainly be attributed to its enhanced relative density. The AZO/SrTiO3 composite with 2.0 wt% SrTiO3 showed the highest power factor at 1000 K because of its highest electrical conductivity. In addition, the composite showed the highest ZT value, which was 1.8 times higher than that of pure AZO.  相似文献   

13.
To improve the interfacial properties in carbon fiber (CF)-reinforced unsaturated polyester (UP) composites, we directly introduced functionalized carbon nanotubes dispersed in the fiber sizing onto the fiber surface. For comparing the influence of polymer type on sizing effect, two different polymers (UP MR13006 and water-soluble epoxy (EP)) were used to prepare sizing agent. Morphology and surface energy of CFs were examined by scanning electron microscopy and dynamic contact angle analysis test. Tensile strength was investigated in accordance with ASTM standards. Mechanical properties of the composites were investigated by interlaminar shear strength (ILSS) and impact toughness. Test results indicate that TS, ILSS, and impact toughness were enhanced simultaneously. For UP matrix, the sizing agent containing UP has better reinforcing and toughening effect than the sizing agent containing water-soluble EP.  相似文献   

14.
X-ray tomography was used to reconstruct the microstructure of a carbon/carbon (C/C) composite to clearly reveal cracks and voids. The voids are divided into two categories (bubbles and micro-pores), and the cracks are classified into three categories (matrix, intra-bundle, and interfacial). The bubbles were found to account for 2–3% volume in the composite and intra-bundle porosity was in the range of 5–8%. The bubbles are spherical and intra-bundle pores are cylindrical corresponding to structural model index (SMI). A three dimensional (3D) image of the network of cracks and voids was reconstructed for the better visualization. Interfacial cracks on a circular bundle/matrix interface were firstly segmented manually from the composite and special algorithms were used for segmentation and measurement of bundle/matrix interfacial a cracks of circular bundle in the composite. The crack thickness is obtained in the range of 0.012–0.018 mm and percentage debonding 20–50%.  相似文献   

15.
Carbon/carbon composites were prepared with phenol-formaldehyde resin, one kind of commercial carbon fiber, and a stabilized fiber that was developed in our laboratory. The effect of pyrolysis on the microstructure, fracture behavior, and flexural strength of the composites during the carbonization process was studied. During the pyrolysis of the composites a chemical reaction at the fiber/resin interface apparently took place. A thermogravimetry (TG) study indicated that the use of stabilized fiber reinforced composites inhibited decomposition reactions and thermal fragmentation in the matrix resin, and reduced the weight loss of the final composites. The X-ray reflection of the resin and the two composites showed a reflection appearing at 2θ ≈ 12° when the samples were carbonized above 600°C. The intensity of this reflection in the composites made with stabilized fiber was higher than that of the composite made with carbon fiber. Because of the formation of strong bonding in the fiber-matrix interface, the composites made with stabilized fiber showed catastrophic failure and low flexural strength below carbonization temperatures of 600°C. Above 600°C, the flexural strength of the composites increased with an increase in the carbonization temperatures, even if the fracture behaviors showed catastrophic failure. The flexural strength of the composites made with carbon fiber showed pseudo-plastic patterns and debonding with very little fiber pullout. Above 800°C, these composites showed a catastrophic failure and smooth failure surfaces. During pyrolysis the flexural strength decreased with an increase in the carbonization temperature.  相似文献   

16.
Preforms were fabricated by the application of direct current fields for the alignment and network formation of carbon nanofibres in the needle-punched carbon fiber felts, and infiltrated by using the thermal gradient chemical vapor infiltration at the temperature of 1000 °C under the total pressure of 5 kPa. The voltage had a strong influence on the carbon nanofiber weight obtained in the preform. With the increase of the voltage, the carbon nanofiber content increased. The carbon nanofibers formed networks on the carbon fibers. When the voltage remained at 30 V, the carbon nanofibers were dispersed uniformly on the carbon fibers. However, when the voltage was larger than 60 V, the carbon nanofibers agglomerated themselves and coated the carbon fibers. The carbon nanofiber content has a strong influence on the temperature distribution and on the densification front existence, velocity and width. The achievable degree of pore filling in the carbon nanofiber-added preform at 30 V was the highest, while the carbon nanofiber-added preforms at 60 and 90 V could not be densified efficiently. The microstructure of pyrocarbon at different positions is discussed.  相似文献   

17.
This paper examines microstructures of 3-D woven carbon/carbon composites. Unidirectional carbon/phenolic rods, with 1 mm in diameter, were made by the pultrusion technique and then combined into 3-D preforms in the axial direction. The preforms were of three-axis orthogonal structures based on 3-D weaving. A special weaving setup to incorporate the rods has been developed, and three types of preforms with varying the weaving yarn sizes have been made. Another conventional type composed of carbon yarns in all axes was also made for purpose of comparison. The geometrical aspects of both types of preforms have been studied. Using the rods was found to effectively eliminate fiber crimp in the axial direction. The fabrication of the carbon/carbon composites has been carried out based on multiple impregnation and carbonization of the phenolic resin. Open and close pores of the materials have been measured after each densification process. The variations in open and close pores differ greatly in response to the densification process. The induced matrix cracks due to pyrolysis shrinkage have been examined based on microscopic observations. Dictated by the preform types, matrix cracks were regularly developed in the weaving yarns. While a dominant transverse crack was formed in each of the yarns, small pores were extensively created in the rods. Separation of bundle interfaces was also observed. Formation of these cracks in relation to processing and microstructures is discussed in detail.  相似文献   

18.
Oxidation microstructure studies of reinforced carbon/carbon   总被引:1,自引:0,他引:1  
Laboratory oxidation studies of reinforced carbon/carbon (RCC) are discussed with particular emphasis on the resulting microstructures. This study involves laboratory furnace (500-1500 °C) and arc-jet exposures (1538 °C) on various forms of RCC. RCC without oxidation protection oxidized at 800 and 1100 °C exhibits pointed and reduced diameter fibers, due to preferential attack along the fiber edges. The 800 °C sample showed uniform attack, suggesting reaction control of the oxidation process; whereas the 1100 °C sample showed attack at the edges, suggesting diffusion control of the oxidation process. RCC with a SiC conversion coating exhibits limited attack of the carbon substrate at 500, 700 and 1500 °C. However samples oxidized at 900, 1100, and 1300 °C show small oxidation cavities at the SiC/carbon interface below through-thickness cracks in the SiC coating. These cavities at the outer edges suggest diffusion control. The cavities have rough edges with denuded fibers and can be easily distinguished from cavities created in processing. Arc-jet tests at 1538 °C show limited oxidation attack when the SiC coating and glass sealants are intact. When the SiC/sealant protection system is damaged, attack is extensive and proceeds through cracks, creating denuded fibers in and along the cracks. Even at 1538 °C, where diffusion control dominates, attack is non-uniform with fiber edges oxidizing preferentially.  相似文献   

19.
Geng Ying Li  Pei Ming Wang 《Carbon》2005,43(6):1239-1245
Multi-walled carbon nanotubes after modified by using a H2SO4 and HNO3 mixture solution were added to cement matrix composites. The mechanical properties of the newly formulated composites were analyzed, and the results show that the treated nanotubes can improve the flexural strength, compressive strength, and failure strain of cement matrix composites. The porosity and pore size distribution of the composites were determined by using Mercury intrusion porosimetry, and it is observed that the addition of carbon nanotubes can fine the pore size distribution and decrease porosity. The phase composition was characterized with Fourier transform infrared spectroscopy. It is found that there are interfacial interactions between carbon nanotubes and the hydrations (such as C-S-H and calcium hydroxide) of cement, which will produce a high bonding strength between the reinforcement and cement matrix. The mineralogy and microstructure were analyzed by using scanning electron microscope. It is shown that carbon nanotubes act as bridges across cracks and voids, which guarantees the load-transfer in case of tension.  相似文献   

20.
《Carbon》1987,25(4):551-557
The oxidation behavior of C/C composite sheet materials in air has been studied over a wide range of temperature. Gasification was detectable at around 500°C and above about 900°C, under the flow conditions used in the experiments, the overall rates of gasification were controlled by gas phase diffusion. The presence of catalysts reduced the temperature for the onset of gasification but had no effect on the kinetics in the diffusion-controlled region. Borate-based coatings containing refractory particulates and silicon carbide coatings sealed with borates have been found capable of protecting C/C composites against air oxidation for extended periods to temperatures of at least 1200°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号