首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
相对密度对泡沫铝力学性能和能量吸收性能的影响   总被引:2,自引:0,他引:2  
康颖安  张俊彦  谭加才 《功能材料》2006,37(2):247-249,254
对不同相对密度的两种胞孔结构--开孔和闭孔泡沫铝进行了单轴压缩试验,研究了相对密度对泡沫铝力学性能和能量吸收性能的影响.结果表明:随着相对密度的增大,泡沫铝的屈服强度与流动应力也相应增加,通过对本实验结果进行拟合,得出泡沫铝的屈服强度与相对密度的关系式.泡沫铝材料吸收的能量随着应变量的增大而增加,在相同应变量下,高密度开孔泡沫铝的吸收能比低密度闭孔材料多.吸能效率反映材料本身的一种属性,高的理想吸能效率表明泡沫铝是一种优良的吸能材料.  相似文献   

2.
因碳纳米管(CNTs)具有优异的性能,被认为是金属基复合材料理想的增强体,因此如何制备得到CNTs增强体均匀分散的金属基复合材料一直是本领域的研究热点。本文通过原位化学气相沉积(CVD)、短时球磨和填加造孔剂的工艺成功制备了CNTs增强的泡沫铝基复合材料,着重研究了球磨过程对复合泡沫铝的微观形貌、压缩性能和吸能性能的影响规律。结果表明,随着球磨时间的延长,CNTs的分散性提高并逐步嵌入铝基体中,使复合泡沫铝的组织均匀性得到改善。相对于未球磨的含CNTs 3.0wt%的复合泡沫材料,当球磨时间增加至90 min时,复合泡沫铝的孔壁硬度、屈服强度和吸能能力分别提高了67%、126%和343%。  相似文献   

3.
This paper presents the results of micro-tensile testing of the individual struts that were extracted from open cell aluminum foams in the as-fabricated (F), annealed (O) and T6-strengthened (T6) conditions. The results reveal that foam struts are generally stronger and more dutile than the corresponding solid alloys under the same heat treatment conditions. The distinguished strut properties are attributed to the unique grain structures of the struts typically consisting of one grain or having bamboo-like grain structure. The measured strut strengths are also incorporated into mechanics models to estimate foam strengths. A comparison of the predicted and measured foam strengths shows that direct measurement of strut properties is critical to make precise estimation of foam strengths.  相似文献   

4.
Al-foams with relative densities ranging from 0.30 to 0.60 and mean pore sizes of 0.35, 0.70 and 1.35 mm were manufactured by a powder metallurgy technology, based on raw cane sugar as a space-holder material. Compressive tests were carried out to investigate the deformation and energy absorbing characteristics and mechanisms of the produced Al-foams. The deformation mode of low density Al-foams is dominated by the bending and buckling of cell walls and the formation of macroscopic deformation bands whereas that of high density Al-foams is predominantly attributed to plastic yielding. The energy absorbing capacity of Al-foams rises for increased relative density and compressive strength. The sintering temperature of Al-foams having similar relative densities has a marked influence on both, energy absorbing efficiency and capacity. Pore size has a marginal effect on energy efficiency aside from Al-foams with mean pore size of 0.35 which exhibit enhanced energy absorption as a result of increased friction during deformation at lower strain levels.  相似文献   

5.
为制备高强轻质泡沫钢吸能材料,本文以430L不锈钢粉为原料、CaCl2为造孔剂,采用粉末冶金烧结-溶解法制备了孔隙率为64%~80%,孔径1~4 mm的泡沫钢.利用SEM和XRD对试样进行微观组织结构分析,并对试样进行轴向准静态压缩测试,分析讨论了孔隙率和孔形对泡沫钢压缩变形行为和吸能特性的影响,以及变形过程中孔结构变形和坍塌机理.研究表明:泡沫钢孔结构呈近球形且分布均匀,孔之间通过孔壁上的微孔形成有效连通.在压缩变形过程中,变形区首先发生在孔形不规则且孔壁较薄处,后诱发周围孔变形并形成多个变形带.泡沫钢试样压缩屈服平台应力随着孔隙率的增加而减小,当孔隙率为64.81%~78.82%时,其对应的屈服平台应力为59.37~17.04 MPa.在孔隙率相同的条件下,孔形为近球形的泡沫试样,其屈服平台应力远高于孔形不规则的试样.当应变量为40%时,孔隙率为64.81%~78.82%的泡沫钢,其单位体积的能量吸收值为23.92~7.32 MJ/m3,约为泡沫铝的5~7倍.4种不同孔隙率泡沫钢样品的理想吸能效率(I)均达0.85以上,表明泡沫钢可以作为一种理想的吸能材料.  相似文献   

6.
7.
The current paper describes the methodology which has been used to design, fabricate and test an energy absorber system based on aluminum foams. The first step in the design process was devoted to define the requirements of the applications, important parameters such as the impact speed, impact force and the energy were defined. In a second part, a collection of aluminum foams were produced using the powder metallurgical route (PM) studying the mechanical properties of these materials. This process led us to define the characteristics of the aluminum foam to insert in the prototype, namely density and geometry. Finally, the energy absorber system was built, testing the whole system. The system worked properly, showing the excellent ability of aluminum foams in applications in which it is necessary to absorb the energy of an impact.  相似文献   

8.
The volume of foams used in packaging is enormous. Proper design requires identification of the correct material and selection of the correct density for each particular application. The vast amount of data in the literature is in need of a systematic analysis and a compact presentation. In this paper, the energy-absorption data of each class of cellular materials (such as open-cell elastic foams) are normalized and presented in a single diagram. Diagrams of this type are termed packaging-selection diagrams, and the optimal density of a cellular material can be obtained from them once the maximum permitted stress of the packaging is known. This new approach offers greater generality and simplicity than existing methods, such as the Janssen factor or energy-absorption diagrams.  相似文献   

9.
The closed-cell Al–Si foams have been prepared by molten body transitional foaming process using TiH2 foaming agent. The cell shape anisotropy ratio of specimens with various relative densities was measured. The quasi-static compressive behavior of Al–Si foams in both longitudinal and transverse directions were investigated. The results show that Al–Si foam loaded in the transverse direction exhibits a lower stress drop ratio. The relationship between plastic collapse stress ratio and cell shape anisotropy is in accordance with Gibson and Ashby model. The plastic collapse stress and the energy absorption property of Al–Si foams increase following power law relationship with relative density. Moreover, Al–Si foams exhibit higher plastic collapse stress and the energy absorption property in the longitudinal direction than that in the transverse direction.  相似文献   

10.
We present the experimental results related to the mechanical behaviour under tensile static, fatigue and compressive relaxation loading of closed cell PVDF electret foams under different loading ratio conditions. The specimens are statically loaded until 60% of their ultimate displacement, and subsequently subjected to cyclic loading under displacement control. The static tests show a stress-strain behaviour and failure mode similar to the one of other polymeric closed cell materials, such as polymetacrylimide-based foams. The fatigue tests show an evolution of the stiffness degradation over the levels of cycles characterised by three distinct phases. The behaviour of the energy dissipated versus the loading ratios and numbers of cycles applied is discussed in this paper, as well as the comparison between the compressive fatigue behavior recorded on similar classes of foams. The compressive relaxation behaviour shows a two-phase dependence over the loading time, with increasing modulus for higher loading ratios, and absence of an asymptotic modulus for long time exposure.  相似文献   

11.
《Materials Letters》2006,60(13-14):1665-1668
Open cell aluminum foams were synthesized by the space-holder method. NaCl particles as space-holder were used to produce samples. The effect of the Y2O3, which was added to the aluminum powders on the mechanical properties of the open cell aluminum foams, has been studied. Adding Y2O3 powders in the compacts has important effect on the foams showing better mechanical properties than those without Y2O3.  相似文献   

12.
采用同步法制备了聚氨酯/环氧树脂互穿聚合物网络(IPN)半硬泡沫。通过压缩和拉伸试验研究了泡沫材料密度对力学性能的影响。研究表明,在所研究的密度范围内,泡沫的压缩模量和屈服强度均与密度成指数关系。泡沫的拉伸模量和断裂强度与密度也存在类似的关系。利用这些方程可以很好地预测泡沫力学性能随密度的变化关系。IPN泡沫兼有较好的韧性和较高的拉伸强度。相同形变下,相同密度IPN半硬泡沫拉伸过程的单位体积吸能大于压缩过程的单位体积吸能。  相似文献   

13.
The dependency of the elastic stiffness, i.e., Young’s modulus, of isotropic closed-cell foams on the cell size variation is studied by microstructural simulation. For this purpose, we use random Laguerre tessellations which, unlike classical Voronoi models, allow to generate model foams with strongly varying cell sizes. The elastic stiffness of the model realizations is computed by micro finite element analysis using shell elements. The main result is a moderate decrease of the effective elastic stiffness for increasing cell size variations if the solid volume fraction is assumed to be constant.  相似文献   

14.
The mechanical behaviour of closed-cell aluminium foams made by both powder metallurgy (LKR) and liquid state (Hydro) processes is investigated. Hydro foams exhibit a significant anisotropy in their mechanical behaviour. The transverse direction stands out as the most favourable one in terms of strength. In contrast, LKR foams show an almost isotropic compressive behaviour. Both foams perform at a level far below the theoretical predictions. The reduced values are a result of imperfections and defects in the cellular microstructure. X-ray microfocus computed tomography (μCT) is therefore used for internal investigation of the foam cell structure. 2D and 3D quantitative image analyses have been performed on μCT images to characterise the morphometric parameters of the foams. The main parameters of interest are cell size, cell size distribution and cell features information. A preferred cell orientation in Hydro foams is observed along the normal and the transverse directions of the specimen. This cell shape anisotropy is quantified using the dimensions of the three axes of the equivalent ellipsoids. The orientation of the cells is well characterised by pole figures of the three axes of equivalent ellipsoids. The influence of this geometrical anisotropy on the mechanical behaviour of the foam is discussed.  相似文献   

15.
Metal foams are attractive in a number of industrial applications due to their light structures whereas a reduction of weight is a main factor for saving energy. Symmetry is very important in analytical modeling as symmetrical conditions simplify considerably the analysis. This technique is practical to use for large engineering structures where mechanical evaluations by approximate methods consume considerable computer time. In the current analysis a 3D symmetrical model is considered for the determination of mechanical properties of open-cell Al foams under compression load. The model consists of a unit cubic cell and produces good results compared to experimental and theoretical values for a long range of cell sizes. It is solved by the finite element method using CATIA program. Finally, it is verified that symmetry can be used successfully for mechanical property evaluation of open-cell Al foams with cell sizes of range 0.5–3 mm and relative densities of range 0.05–0.11.  相似文献   

16.
Compressive and tensile behaviour of aluminum foams   总被引:3,自引:0,他引:3  
The uniaxial compressive and tensile modulus and strength of several aluminum foams are compared with models for cellular solids. The open cell foam is well described by the model. The closed cell foams have moduli and strengths that fall well below the expected values. The reduced values are the result of defects in the cellular microstructure which cause bending rather than stretching of the cell walls. Measurement and modelling of the curvature and corrugations in the cell walls suggests that these two features account for most of the reduction in properties in closed cell foams.  相似文献   

17.
18.
The bending strength, stiffness and energy absorption of corrugated sandwich composite structure were investigated to explore novel designs of lightweight load-bearing structures that are capable of energy absorption in transportation vehicles. Key design parameters that were considered include fibre type, corrugation angle, core-sheet thickness, bond length between core and face-sheets, and foam inserts. The results revealed that the hybridization of glass fibres and carbon fibres (50:50) in face-sheets was able to achieve the equivalent specific bending strength as the facet-sheets made entirely of carbon fibre composites. Increasing the corrugation angle and the core sheet thickness improved the specific bending strength of the sandwich structure, while increasing the bond length led to a reduction in the specific bending strength. The hybrid composite coupons with foam insertion showed medium energy absorption, ranging between the glass fibre and the carbon fibre composite coupons, but the highest crush force efficiency among all designs.  相似文献   

19.
Recently aluminum foaming has been of much interest due to its characteristics properties of light weight structure. Metallic foams are highly porous materials which present complex structure of three-dimensional open cells. This aspect causes strong limitations in mass transport due to electro-deposition technology. In this work, the electro-deposition of copper on aluminum open-cell foams substrates was developed, in order to enhance the thermal and mechanical properties of these cellular materials. The mechanical and thermal characterization of the produced samples was lead through compression and conductivity tests. On the basis of the experimental results, analytical models are proposed to predict the quantity and the quality characteristics of the coating.  相似文献   

20.
《Materials Letters》2007,61(14-15):3138-3141
Commercially closed cell aluminium foams known as ALPORAS, have undergone a set of compressive tests at ambient as well as elevated temperatures in order to study the difference in their behavior in terms of the foam's density and test temperature. A compressive stress–strain curve similar to that of dense metals has been resulted. The effect of increasing the foam's density of ALPORAS foams on their mechanical properties was opposite to that of increasing the test temperature. Furthermore the microstructure examination has been introduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号