首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of the atmosphere on the oxidation rates of aluminum-can alloyswas studied using thermogravimetric methods. The atmospheres included: air,Ar+1%O2, Ar+5%O2, and CO2. Temperaturesranged from 450 to 800°C. The oxidation rate was influenced by thesurface condition and by the time elapsed after specimen preparation. Increasingtemperature increased the oxidation rate of both AA 3004 and 5182. Parabolickinetics were observed for AA 3004 and linear kinetics were observed forAA 5182 at 450 and 500°C. From 550 to 800°C, parabolic behavior wasobserved for AA 5182. The reduction of free oxygen in the atmosphere reducedthe rate of oxidation. The reactivity of the atmospheres decreased in thefollowing sequence: air, Ar+5%O2, Ar+1%O2, and CO2.  相似文献   

2.
3.
4.
5.
《Acta Materialia》2001,49(1):41-51
Nuclear magnetic resonance (NMR) spectroscopy of 27Al was used to study the development of precipitation in aged Mg–6 wt%Al, Mg–9 wt%Al and Mg–9 wt%Al–(x) wt%Zn alloys. The 27Al spectra for the aged alloys consist of two peaks; one from the aluminium in solid solution and the other from aluminium in the precipitate phase. The proportion of aluminium atoms in the matrix and precipitate phases was measured, as a function of time at temperature, using the relative intensities of peaks. The nucleation of the continuous precipitates was found to be highly dependent on the initial supersaturation and it is proposed that it is a homogeneous process. The Austin–Rickett relation successfully models the amount of continuous precipitation with aging time; the kinetics is consistent with one-dimensional and interface-controlled growth. Changes in composition of the matrix and precipitate phases were correlated with the 27Al Knight shift characterising these phases. The Knight shift data from a series of ternary Mg–9 wt%Al–(x)wt%Zn alloys indicates that the Zn segregates to the precipitate phase during precipitation.  相似文献   

6.
In this study, fatigue properties and fracture mechanism of dissimilar Al–Mg–Si/Al–Zn–Mg aluminum alloys friction stir welding(FSW) joints were investigated and the effect of the sheet configuration on the fatigue behavior of the FSW joints was also discussed. Results showed that the joints owned better fatigue properties when the Al–Zn–Mg aluminum alloy was placed at the advancing side(AS). At 10~7 cycles, the fatigue strengths of Al–Zn–Mg–AS and Al–Mg–Si–AS joints were, respectively, 105.6 and 90.1 MPa. All joints fractured at the heat-affected zone at the Al–Mg–Si alloy side. Transmission electron microscopy results showed that better fatigue property of the Al–Zn–Mg–AS joint was associated with the bridging effect of the bigger secondary phase particles.  相似文献   

7.
Abstract

The quench sensitivity of Al–Si–Mg (D357 unmodified and Sr modified), and Al–Si–Mg–-Cu (354 and 319 Sr modified) cast alloys was investigated using a fluidised bed (FB). The average cooling rate of castings in the fluidised bed is lower than those quenched in water; the cooling rate first increases to a certain maximum and then decreases during quenching. The change in the cooling rate during quenching in water was more drastic, where the cooling rate varied from 0 to ?80 K s?1 in less than 8 s, as compared with those quenched in FB, where the cooling rate varied from 0 to ?14 K s?1 in 18 s. The FB quenching resulted in the formation of several metastable phases in Al–Si–Mg–Cu alloys; in contrast, no such transformation was observed during water quenching. The T4 yield strength of the FB quenched alloys was greater than water quenched alloys owing to the formation of a greater volume fraction of metastable phases in the FB quenched alloys. The tensile properties of T6 treated alloys show that Al–Si–Mg alloys (both unmodified and Sr modified) are more quench sensitive than Al–Si–Mg–Cu alloys. The high quench sensitivity of the Al–Si–Mg alloys is because GP zones are not formed, whereas GP zones are formed during quenching of the Al–Si–Mg–Cu alloys as predicted by time temperature transformation and continuous cooling transformation) diagrams.  相似文献   

8.
The cooling curves and the change of contraction/expansion during solidification and cooling were tested by using a selfmade device which could achieve the one-dimensional contraction instead of three-dimensional contraction of the casting.Then, the effects of Al content(0, 1.1, 3, 5, 10, 12.9, 15, 17, 19, 22, 24 and 30 wt%) on the thermal contraction/expansion of the binary Mg-Al as-cast alloys during solidification were obtained. The results showed that expanding instead of contraction was present in Mg-Al alloys with the addition of 0-30 wt% Al during solidification. The values of expansion significantly increased at first and then decreased with the increase in Al content. And the maximum expansion ratio of 0.44%(maximum expansion value: 0.841 mm) was present in the Mg-15 wt% Al alloy. Contraction instead of expansion occurred once the temperature drops to the temperature corresponding to the expansion value in total, indicating the occurrence of a continuous expansion during the solidification process in mushy zone for the Mg alloys with Al addition of 5-30 wt%. The expansion value in total consisted of two parts: the expansions occurring in the liquid-phase zone and mushy zone. The expansion in liquid zone was present in every Mg-Al alloy, and it contributed to the most proportion of the total expansion value when the Al content in Mg-Al alloy was lower than 10 wt% or higher than 22 wt%. However, the total expansion value was mainly determined by the solidification behavior in mushy zone when the Al content was among 10-22 wt% in Mg-Al alloys.  相似文献   

9.
Thermal properties of AlN-Si-Al composites produced by pressureless melt infiltration of Al/Al alloys into porous α-Si3N4 preforms were investigated in a temperature range of 50-300 °C. SEM and TEM investigations revealed that the grain size of AlN particles was less than 1 μm. In spite of sub-micron grain size, composites showed relatively high thermal conductivity (TC), 55-107 W/(m.K). The thermal expansion coefficient (CTE) of the composite produced with commercial Al source, which has the highest TC of 107 W/(m.K), was 6.5×10?6 K?1. Despite the high CTE of Al (23.6×10?6 K?1), composites revealed significantly low CTE through the formation of Si and AlN phases during the infiltration process.  相似文献   

10.
Al–3Cu–Mg alloy was fabricated by the powder metallurgy (P/M) processes. Air-atomized powders of each alloying element were blended with various Mg contents (0.5%, 1.5%, and 2.5%, mass fraction). The compaction pressure was selected to achieve the elastic deformation, local plastic deformation, and plastic deformation of powders, respectively, and the sintering temperatures for each composition were determined, where the liquid phase sintering of Cu is dominant. The microstructural analysis of sintered materials was performed using optical microscope (OM) and scanning electron microscope (SEM) to investigate the sintering behaviors and fracture characteristics. The transverse rupture strength (TRS) of sintered materials decreased with greater Mg content (Al–3Cu–2.5Mg). However, Al–3Cu–0.5Mg alloy exhibited moderate TRS but higher specific strength than Al–3Cu without Mg addition.  相似文献   

11.
The quench sensitivity of Al-Cu-Mg alloy was investigated at different thicknesses of the thick plate.The quenching process was simulated via finite element analysis (FEA);time-temperature-property (TTP) curves and time-temperature-transformation (TTT) curves were obtained through hardness test and differential scanning calorimetry (DSC) test;and the microstructural observation was carried out by scanning electron microscopy (SEM)and transmission electron microscopy (TEM).Experimental results ex...  相似文献   

12.
A technology is developed for single-pass friction stir welding (FSW) of 11- and 35-mm-thick plates of Al–Mg–Sc alloys. The microstructural and mechanical heterogeneity of the welded joints is investigated. The welded joints obtained under the optimum welding conditions are free from macrodefects. The strength of the welded joint equals 98% of the strength of the parent metal, which is higher than the strength of fusion-welded joints. It is concluded that the FSW of thick plates of Al–Mg–Sc alloy can be used efficiently in practice.  相似文献   

13.
《Acta Materialia》2001,49(1):65-75
In the present investigation a special control volume formulation of the classical precipitation model for coupled nucleation, growth and coarsening has been adopted to describe the evolution of the particle size distribution with time during thermal processing of Al–Mg–Si alloys. The analysis includes both isothermal and non-isothermal transformation behaviour. Well established dislocation theory is then used to evaluate the resulting change in hardness or yield strength at room temperature, based on a consideration of the intrinsic resistance to dislocation motion due to solute atoms and particles, respectively following heat treatment. The model is validated by comparison with experimental microstructure data obtained from transmission electron microscope examinations and hardness measurements, covering a broad range in the experimental conditions. It is concluded that the model is sufficiently relevant and comprehensive to be used as a tool for predicting the response of Al–Mg–Si alloys to thermal processing, and some examples are given towards the end.  相似文献   

14.
A geometrical model has been applied to predict the morphology of faceted Mg32(Al, Zn)49 precipitates in a Mg–Zn–Al alloy using the observed orientation relationship (OR) and the lattice parameters of the precipitates and the matrix as inputs. Planes in rational or in irrational orientations with higher densities of good matching sites are more likely to be preferred, which agrees well with experimental observations.  相似文献   

15.
Generally, the good combination of pre-deformation and aging can improve the mechanical strength of the Al–Cu–Li–Mg alloys. However, the effects of pre-deformation on competitive precipitation relationship and precipitation strengthening have not been clarified in detail in Al–Cu–Li–Mg alloys with high Mg. In the present study, the effects of pre-deformation level on the microstructure and mechanical properties of an Al–2.95 Cu–1.55 Li–0.57 Mg–0.18 Zr alloy have been investigated. It is found that the introduction of dislocation by 5% pre-deformation can facilitate the precipitation of new successive composite precipitates and T _1 precipitates along the sub-grain boundaries or dislocations and inhibit the precipitation of dispersive GPB zones which is the main precipitates of the alloys without pre-deformation. The introduction of 5% pre-deformation can enhance the mechanical properties considerably. When the pre-deformation level increases from 5 to 15%, the number density of the successive composite precipitates and T _1 precipitates increases, and the aspect ratio of T _1 precipitates decreases. The decrease in T _1 precipitate aspect ratio and the increment of the successive composite precipitates result in the reduction in precipitation strengthening. Therefore, the increase in pre-deformation level from 5 to 15% does not further improve the mechanical properties of the alloys, although the dislocation strengthening increases continuously.  相似文献   

16.
《Acta Materialia》2003,51(17):4977-4989
An innovative spray-deposition technique has been applied to produce in situ TiC/Al and TiC/Al–20Si–5Fe–3Cu–1Mg composites. This technique provides a new route to solve the problems of losses and agglomeration of the reinforcement particles when they are injected into the spray cone of molten droplets during spray forming process. Experimental results have shown that the presence of needle-like Al3Ti and Al–Si–Fe compounds, which are detrimental not only to the fracture toughness, but also to the stability of the microstructure, can be eliminated completely from the final product by using a proper Ti:C molar ratio of 1:1.3 in the Ti–C–Al preforms and adding 5 wt% TiC particles to Al–20Si–5Fe–3Cu–1Mg alloy. Moreover, another major problem of coarsening of silicon particles usually encountered in the hypereutectic Al–Si alloys has also been solved by the technique. The silicon particles in the spray-deposited 5 wt% TiC/Al–20Si–5Fe–3Cu–1Mg composite were much refined (∼2 μm) compared to those (∼5 μm) obtained in the matrix alloy without TiC addition. The formation and elimination mechanisms of Al3Ti phase in TiC/Al composites can be explained based on thermodynamic theory. The modification of the microstructures in the spray-deposited Al–20Si–5Fe–3Cu–1Mg alloy can be interpreted in the light of the knowledge of atomic diffusion. The experimental results also showed that the ultimate tensile strength of the TiC/Al composites was improved over that of the unreinforced Al matrix.  相似文献   

17.
《Acta Materialia》2001,49(16):3129-3142
We demonstrate how first-principles total energy calculations may be used to elucidate both the crystal structures and formation enthalpies of complex precipitates in multicomponent Al alloys. For the precipitates, S(Al–Cu–Mg), η′ (Al–Zn–Mg), and Q(Al–Cu–Mg–Si), energetics were computed for each of the models of the crystal structures available in the literature allowing a critical assessment of the validity of the models. In all three systems, energetics were also calculated for solid solution phases as well as other key phases (e.g., equilibrium phases, GP zones) in each precipitation sequence. For both the S and η′ phases, we find that recently proposed structures (based on electron microscopy) produce unreasonably high energies, and thus we suggest that these models should be re-evaluated. However, for all three precipitates, we find that structures based on X-ray diffraction refinements provide both reasonable energetics and structural parameters, and therefore the first-principles results lend support to these structural refinements. Further, we predict energy-lowering site occupations and stoichiometries of the precipitate phases, where experimental information is incomplete. This work suggests that first-principles total energy calculations can be used in the future as a complementary technique with diffraction or microscopy for studying precipitate structures and stabilities.  相似文献   

18.
《Acta Materialia》2004,52(1):161-171
Solute diffusion in an Al-rich binary Al–Mg alloy is studied by means of atomistic simulations. The activation energy for diffusion of Mg in the bulk is evaluated in the dilute solution limit for the nearest neighbor and the ring mechanisms. It is concluded that bulk diffusion at low and moderate temperatures must be assisted by vacancies. Further, diffusion of Mg along the core of edge, 60° and screw dislocations is studied. The activation energy for vacancy formation in the core and for vacancy-assisted Mg migration is evaluated for a large number of diffusion paths in the core region. It is observed that, similar to the bulk, Mg diffusion in absence of vacancies is energetically prohibitive. The paths of minimum activation energy are identified for vacancy-assisted diffusion, for all three types of dislocations. The lowest energy path is found in the core of the 60° dislocation, its activation energy being 60% of the activation energy in the bulk. Most diffusion paths have activation energies larger than 75% of the equivalent bulk quantity. This analysis is relevant for the discussion on the mechanism of dynamic strain aging in these alloys. The data presented here show that pipe diffusion, which is currently considered as the leading mechanism responsible for dynamic strain aging is too slow in absence of excess vacancies.  相似文献   

19.
《Acta Materialia》1999,47(14):3927-3934
Wetting of porous TiC0.17N0.83 by six alloys from the Al–Mg–Si system (pure Al, pure Mg, Al–15 at.% Mg, Al–10 at.% Si, Mg–5 at.% Si, and Al–10 at.% Mg–10 at.% Si) in an argon atmosphere was studied using the sessile drop experiment. The contact angle of the liquid drops on TiC0.17N0.83 substrates was measured as a function of temperature. Aluminium, Al–10 at.% Si, and Al–10 at.% Mg–10 at.% Si did not wet TiC0.17N0.83 in the studied temperature range. Magnesium always wetted TiC0.17N0.83 with a minimum contact angle of ≈44° at 900°C, and alloying with Mg significantly lowered the contact angle of Al on TiCN. Alloying with Si deteriorated the wetting of TiCN by Mg. A comparative study between the systems was conducted, based on the results and on data available in the literature. The improvement of the wetting of TiCN by Al due to alloying with Mg can be explained by the segregation of Mg to the interface with TiCN, where it lowers the interface energy. The addition of Si to pure Mg or to Al–Mg results in an increase in the contact angle on TiCN.  相似文献   

20.
Al–Mg alloys are considered to have potentials to form twins during deformation because Mg can reduce the intrinsic stacking fault energy γISFE of Al. Nevertheless, twinning has rarely been found in Al–Mg alloys even subjected to various severe plastic deformation (SPD) techniques. In order to probe the twinning propensity of Al–Mg alloys, first-principles calculations were carried out to investigate the effects of Mg and vacancies on the generalized planar fault energy (GPFE) of Al. It is found that both Mg and vacancies exhibit a Suzuki segregation feature to the stacking fault, and have the influence of decreasing the γISFE of Al. However, γISFE does not decrease and the twinnability parameter τa of Al does not increase monotonically with increasing Mg concentration in the alloy. On the basis of τa evaluated from the calculated GPFE of Al–Mg alloys, we conclude that deformation twinning is difficult for Al–Mg alloys even with a high content of Mg. Besides, the decrease of γISFE caused by the introduction of Mg and vacancies is supposed to have the effect of improving the work-hardening rate and facilitating the formation of band structures in Al–Mg alloys subjected to SPD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号