首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
一种实时手势识别应用开发框架   总被引:1,自引:0,他引:1  
提出并设计了一种简化的、基于自然手势的实时识别的软件开发框架,通过手势样本采集和消息映射机制,开发人员可以自定义手势含义,将手势含义封装成消息发送给具体应用.降低了开发实时手势识别软件的成本,屏蔽了手势识别技术本身的复杂性.  相似文献   

2.
针对手势识别过程中单一手势特征对手势描述的不足,提出了一种基于改进Hu矩和灰度共生矩阵GLCM的手势识别方法 Hu-GLCM。首先利用肤色模型对采集的图像分割出手势区域;其次采用数学形态学和多边形拟合的方法提取手势的单连通轮廓,利用改进Hu-GLCM算法提取手势的几何形状特征和纹理特征并建立模板数据库;最后通过扩展的Canberra距离对手势图像进行识别和分类。实验结果表明,该改进算法对7种手势的平均识别率达到95%以上,且计算速度快,能够满足实时性的需求。  相似文献   

3.
Zhang  Yong  Zhou  Wenjun  Wang  Yujie  Xu  Linjia 《Multimedia Tools and Applications》2020,79(25-26):17445-17461
Multimedia Tools and Applications - Gesture recognition is of great significance for human-machine interaction and it has broad application prospects. In order to improve the detection accuracy and...  相似文献   

4.
为了提高肌电信号手势识别算法的准确度,增强实时性,提出了一种基于动态时间规整(DTW)算法的手势识别方法,该方法利用肌电信号(EMG)对个体间的手势进行识别。首先,采用滑动平均能量的方法对原始的EMG信号进行数据分割,探测有效动作;其次,对于分割的数据段使用平均绝对值(MAV)来提取信号特征;最后,用DTW算法将8维的EMG信号融合并计算测试样本和模版的相似度,其中采用了DTW算法寻找规整路径的方法进行了模板制作,实现了个体间的手势识别。实验结果表明,使用DTW算法对肌电信号进行手势识别,其动作识别的准确率达到96.09%,该方法计算速度快,实时性强。  相似文献   

5.
王红霞  王坤 《计算机应用》2016,36(7):1959-1964
基于RGB-D(RGB-Depth)的静态手势识别的速度高于其动态手势识别,但是存在冗余手势和重复手势而导致识别准确性不高的问题。针对该问题,提出了一种基于加锁机制的静态手势识别方法来识别运动中的手势。首先,将通过Kinect设备获取RGB数据流和Depth数据流融合成人体骨骼数据流;然后,在静态手势方法中引入加锁机制,并与之前建立好的骨骼点特征模型手势库进行比对计算;最后,设计一款“程序员进阶之路”益智类网页游戏进行应用与实验。实验验证在6种不同运动手势情况下,该方法与纯静态手势识别方法相比,平均识别准确率提高了14.4%;与动态手势识别相比,识别速度提高了14%。实验结果表明,提出的基于加锁机制的静态手势识别方法,既保留了静态识别的速率,实现了实时识别;又能很好地剔除冗余手势和重复手势,提高了识别正确性。  相似文献   

6.
静态手势识别是以手势驱动的人机交互系统的核心技术。针对静态手势识别问题,提出了一种基于深度图像进行静态手势识别的方法。为了消除静态手势识别过程中的平移、旋转和缩放不变性,提取手势轮廓的Hu不变矩,并以Hu不变矩作为特征构建静态手势深度感知神经网络模型,以此实现对静态手势进行分类识别。在VisualStudio的开发环境下实现了对该方法的验证,取得了良好的效果,并与传统的模板匹配法与基于卷积神经网络的深度学习方法作比较,静态手势识别准确率总体可达95%,识别效率高,能满足实时性要求。  相似文献   

7.
谈家谱  徐文胜 《计算机应用》2015,35(6):1795-1800
针对基于视频的弯曲指尖点识别难、识别率不高的问题,提出一种基于深度信息、骨骼信息和彩色信息的手势识别方法。该方法首先利用Kinect相机的深度信息和骨骼信息初步快速判定手势在彩色图像中所在的区域,在该区域运用YCrCb肤色模型分割出手势区域;然后计算手势轮廓点到掌心点的距离并生成距离曲线,设定曲线波峰与波谷的比值参数来判定指尖点;最后结合弯曲指尖点特征和最大内轮廓面积特征识别出常用的12个手势。实验结果验证阶段邀请了6位实验者在相对稳定的光照环境条件下来验证提出的方法,每个手势被实验120次,12种手势的平均识别率达到了97.92%。实验结果表明,该方法能快速定位手势并准确地识别出常用的12种手势,且识别率较高。  相似文献   

8.
Electromyographic (EMG) armband with electrodes mounted around the user’s forearm is one of the most ergonomic wearable EMG devices and is used to recognize fine hand gesture with great popularity. Definitely, the distributions of signal differ greatly in different wearing positions of armband based on the physiological characters of EMG, which will cause the performance decline and even the inapplicability of the recognition model built in one position. Hence, this paper proposes a wearing-independent hand gesture recognition method based on EMG armband. To eliminate the influence of wearing position, Standard Space is proposed in this paper. Based on the sequential features of EMG in different scales, the wearing position of armband is predicted and helps unify the original features to the proposed space. Then, with the unified signals, fine hand gesture can be recognized accurately and robustly with lightweight Random Forest (RF). The experimental results showed that the recognition accuracy of the proposed method was 91.47% approximately. And compared with the method without fine feature extraction and feature space unification, the performance was improved by 10.12%.  相似文献   

9.
针对手机用户安全问题,提出一种基于手机加速度传感器的手势身份认证方法。采用均值—方差归一化方式对三维手势数据进行归一化处理;采用门限值方法截取手势动作,去除干扰数据;认证算法采用模板匹配的方式,通过设计的均值—动态时间归整(A-DTW)算法对参考模板和测试模板进行比较,判断用户的真实性。仿真结果显示:该算法方便可行,具有较高的识别率。  相似文献   

10.
针对现有基于商用WiFi设备的人体手势识别方法存在的子载波选择不够优化、动作区间截取不够精确等问题,提出一种基于近似熵子载波选择的人体手势识别(AEGR)方法.利用提出的最小近似熵法构建识别方法待处理的CSI幅值数据,对构建的数据采用小波去噪和中值滤波组合法进行去噪;利用滑动窗极差法精确截取CSI幅值的动作区间,据此提...  相似文献   

11.
谢小雨  刘喆颉 《计算机应用》2017,37(9):2700-2704
为了增强手势识别的多样性和简便性,提出了一种基于肌电信号(EMG)和加速度(ACC)信息融合的方法来识别动态手势。首先,利用MYO传感器采集EMG和ACC的手势动作信息;然后分别对ACC和EMG信号作特征降维和预处理;最后,为减少训练样本数,提出用协作稀疏表示分类器来识别基于ACC信号的姿态手势,用动态时间规整(DTW)算法和K-最邻近分类器(KNN)来分类EMG信号的手形手势。其中在利用协作稀疏表示分类器识别ACC姿态信号时,通过对创建字典最佳样本个数以及特征降维的维数进行研究来降低手势识别的复杂度。实验结果表明,手形手势的平均识别率达到了99.17%,对于向上向下、向左向右4种姿态手势平均识别率达到 96.88%,而且计算速度快;对于总体的12个动态手势,其平均识别率达到96.11%。该方法对动态手势的识别率较高,计算速度快。  相似文献   

12.
Multimedia Tools and Applications - In the process of hand gesture recognition, the diversity and complexity of gesture will greatly influence the recognition rate and reliability. In the task of...  相似文献   

13.
蒋穗峰  李艳春  肖南峰 《计算机应用》2016,36(12):3486-3491
针对目前操作工人与工业机器人之间的交互还是采用比较机械化的交互方式,设计使用Kinect传感器作为手势采集设备,并使用人的手势来对工业机器人进行控制的方法。首先,使用深度阈值法与手部骨骼点相结合的方法,从Kinect传感器获取的数据中准确地提取出手部图像。在提取过程中,操作员无需佩戴任何设备,对操作员所站位置没有要求,对背景环境也没要求。然后,用稀疏自编码网络与Softmax分类器结合的方法对手势图像进行识别,手势识别过程包含预训练和微调,预训练是用逐层贪婪训练法依次训练网络的每一层,微调是将整个神经网络看成一个整体微调整个网络的参数,手势识别的准确率达到99.846%。最后,在自主研发的工业机器人仿真平台上进行实验,在单手和双手手势下都取得了不错的效果,实验结果验证了手势控制工业机器人的可行性和可用性。  相似文献   

14.
为了保证智能手机敏感信息的安全性,设计实现了一种基于手机内置三轴加速度传感器的三维手势认证方案。在手势端点检测部分,在定性分析手势加速度信号能量分布特性的基础上,提出了一种基于能量熵的新方法实现有效手势截取。进一步设计基于欧式距离的动态时间规整算法对截取后的手势序列信号进行匹配认证,当他人模仿手势错误接受率趋近0%时,本人认证手势错误拒绝率维持在7%左右,从而实现智能手机用户身份识别。  相似文献   

15.
16.
现今智能手机发展迅猛,人们生活质量得到大幅提高。为了更有效地利用智能手机资源,提高用户体验,提出了一种使用超声波的智能手机手势识别系统(AGRS系统)。该系统使用移动设备自带的扬声器发射20 kHz的超声波信号,使用话筒接收反射信号。AGRS系统可通过陀螺仪辅助判断当前手机摆放状态。系统使用虚警率以降低手势误识别率。AGRS利用声波的Doppler效应提取特征值,用FFT算法处理声波信号,最后选择适合的分类器对手势进行识别。实验结果证明AGRS系统手势识别率超过95%。  相似文献   

17.
介绍了嵌入式Linux系统上vsftp的搭建和配置方法。给出了一种不使用Linux USB gad-get driver API进行复杂的驱动开发仍能方便快捷地访问嵌入式设备SD卡等多种外设的统一方法 ,并介绍了利用用户权限来实现嵌入式设备受控访问的方法。  相似文献   

18.
《电子技术应用》2013,(1):72-75
针对目前基于加速度传感器的手势识别算法的动态实时性与识别率的相互矛盾性,提出一种区间分布概率矩阵模型及动态手势识别方法。将手势动作的三维加速度信号进行动作数据自动检测、归一化和三次样条插值预处理,再根据信号分布特征,确定数据观测点,构造各观测点处的区间分布概率矩阵,优化矩阵,实现在线快速手势识别。该方法对手指可穿戴设备得到的真实数据集中进行了评估。结果显示其实时效果好,识别率高,实用性强。  相似文献   

19.
Ju  Chunhua  Wang  Jie  Zhou  Guanglan 《Multimedia Tools and Applications》2019,78(21):30097-30110
Multimedia Tools and Applications - With the development of E-commerce, more and more people have strong desire to buy goods on the online shopping platform. But they often need to spend more time...  相似文献   

20.
为了进一步提高基于足底压力传感器的老年跌倒检测系统的识别率,以及准确地判断人体跌倒方向,提出了利用自组织映射神经网络(SOM)和足底压力传感信息对人体动作进行聚类分析的方法。为了验证SOM方法的识别效果,采取包含跌倒在内的13类常见动作的130个样本对训练好的SOM网络进行测试。测试结果表明,系统灵敏度、特异度及准确度分别为92.5%、93.3%、93.1%,其结果均优于常用的阈值法。综上,SOM方法对人体跌倒姿态识别具有较高的可靠性和准确度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号