首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The IFMIF-EVEDA accelerator will be a 9 MeV, 125 mA cw deuteron accelerator prototype for verifying the validity of the accelerator design for IFMIF. A beam stop will be used for the RFQ and DTL commissioning as well as for the EVEDA accelerator tests. Therefore, this component must be designed to stop 5 MeV and 9 MeV deuteron beams with a maximum power of 1.13 MW.The first step of the design is the beam-facing material selection. The criteria used for this selection are low neutron production, low activation and good thermomechanical behavior. In this paper, the mechanical analysis and radioprotection calculations that have led to the choice of the main beam dump parameters will be described.The present design is based on a conical beam stop (2.5 m length, 30 cm diameter, and 3.5 mm thickness) made of copper plus a cylindrical 0.5 m long beam scraper. The cooling system is based on an axial high velocity flow of water. This design is compliant with the mechanical design rules during full power stationary operation of the accelerator. The radioprotection calculations performed demonstrate that, with an adequate local shielding, doses during beam on/off phases are below the limits.  相似文献   

2.
《Fusion Engineering and Design》2014,89(9-10):2199-2203
The purpose of the research is to define the most adequate manufacturing process for the dump of a linear deuteron accelerator. The deuteron beam can be pulsed as well as continuous with energies up to 9 MeV. The maximum beam power is 1.12 MW corresponding to a beam current of 125 mA.The requirements on the surface on which the deuterons will be stopped are quite demanding and the length and slenderness of the cone poses a considerable difficulty in the manufacturing process.The design of the beam dump is based on a copper cone 2500 mm long, 300 mm aperture and 5 to 6.5 mm thickness.Basically only two technologies were found feasible for the manufacturing of the cone: Electroforming and Electron Beam Welding (EBW).The article shows the main results found when manufacturing different prototypes.  相似文献   

3.
《Annals of Nuclear Energy》2005,32(9):949-963
Activation cross-sections for the (n, n′) reaction were measured by means of the activation method at neutron energies of 3.1 and 2.54 MeV using a pulsed neutron beam. The target nuclei were 79Br, 90Zr, 197Au, and 207Pb whose half-lives were between 0.8 and 8 s. The value of the 90Zr(n, n′) 90mZr reaction was obtained for the first time. In order to confirm the pulsed neutron beam measuring method, the cross-section data of 79Br and 197Au were compared with previous data obtained using a pneumatic sample transport system. The results of this comparison were in agreement within the range of experimental error. The d-D neutrons were generated by bombarding a deuterated titanium target with a 350-keV d+-beam at the 80° beam line of the Fusion Neutronics Source (FNS) at the Japan Atomic Energy Research Institute. In order to obtain reliable activation cross-sections, careful attention was paid to correct the efficiency for a volume source, and the self-absorption of gamma rays in irradiated samples. The systematics of the (n, n′) reaction at a neutron energy of 3.0 MeV, which can predict cross-section of (n, n′) reaction with an accuracy of 50%, was proposed for the first time on the basis of our data.  相似文献   

4.
《Fusion Engineering and Design》2014,89(9-10):2066-2070
On the Linear IFMIF/EVEDA Prototype Accelerator (LIPAc), the validation up to 9 MeV deuteron beam with 125 mA continuous wave is planned in Rokkasho, Aomori, Japan. Since the deuteron beam power exceeds 1 MW, safety issue related to γ-ray and neutron production is critical. To establish the safety management indispensable to reduce radiation exposure for personnel and activation of accelerator equipment, Personnel Protection System (PPS) of LIPAc control system, which works together with Radiation Monitoring System and Access Control System, was developed for LIPAc. The management of access to the accelerator vault by PPS and the beam duty management of PPS are presented in details.  相似文献   

5.
The difference of soft error rates (SERs) in conventional bulk Si and silicon-on-insulator (SOI) static random access memories (SRAMs) with a technology node of 90 nm has been investigated by helium ion probes with energies ranging from 0.8 to 6.0 MeV and a dose of 75 ions/μm2. The SERs in the SOI SRAM were also investigated by oxygen ion probes with energies ranging from 9.0 to 18.0 MeV and doses of 0.14–0.76 ions/μm2. The soft error in the bulk and SOI SRAMs occurred by helium ion irradiation with energies at and above 1.95 and 2.10 MeV, respectively. The SER in the bulk SRAM saturated with ion energies at and above 2.5 MeV. The SER in the SOI SRAM became the highest by helium ion irradiation at 2.5 MeV and drastically decreased with increasing the ion energies above 2.5 MeV, in which helium ions at this energy range generated the maximum amount of excess charge carriers in a SOI body. The soft errors occurred by helium ions were induced by a floating body effect due to generated excess charge carriers in the channel regions. The soft error occurred by oxygen ion irradiation with energies at and above 10.5 MeV in the SOI SRAM. The SER in the SOI SRAM gradually increased with energies from 10.5 to 13.5 MeV and saturated at 18 MeV, in which the amount of charge carriers induced by oxygen ions in this energy range gradually increased. The computer calculation indicated that the oxygen ions with energies above 13.0 MeV generated more excess charge carriers than the critical charge of the 90 nm node SOI SRAM with the designed over-layer thickness. The soft errors, occurred by oxygen ions with energies at and below 12.5 MeV, were induced by a floating body effect due to the generated excess charge carriers in the channel regions and those with energies at and above 13.0 MeV were induced by both the floating body effect and generated excess carriers. The difference of the threshold energy of the oxygen ions between the experiment and the computer calculation might be due to the difference between the designed and real structures.  相似文献   

6.
The IFMIF–EVEDA beam dump is designed to stop a 9 MeV, 125 mA continuous wave deuteron beam that deposits along its surface a total of 1.125 MW. The beam dump design is based on a 2.5 m long copper cone whose inner surface absorbs the beam. This piece is cooled by water flowing at high velocity through the annular channel formed between it and a second piece (shroud) made of four truncated cones of slightly different slopes.In this paper the beam dump cooling system will be briefly described, and the relevant 1D and 3D results will be presented paying especial attention to the computational fluid dynamics results.  相似文献   

7.
During the IFMIF/EVEDA phase, a 125 mA and 9 MeV deuterons prototype accelerator will be designed and tested for the final IFMIF project. During operation of the accelerator deuteron losses will occur in several components leading to material activation induced by deuteron and/or by secondary neutrons, depending on its location. This work is focused on a first radioactive waste assessment at the end of the operational life of this facility. The radioactive wastes generation will be evaluated, focusing on the beam dump and main accelerator components. Following the current approach to the back-end of the activated materials, they will be categorized according to radiological complexity of operations and final management routes. For the calculations, MCUNED and ACAB codes were used together with TENDL-2010 and EAF-2007 data libraries, respectively.  相似文献   

8.
《Fusion Engineering and Design》2014,89(9-10):2053-2056
LIPAc stands for Linear IFMIF Prototype Accelerator. LIPAc generates a 9 MeV deuteron beam, which is stopped at a beam dump, depositing over 1 MW of thermal power. A water cooling system has been devised for extracting this energy while keeping operational temperatures within range. The existing high neutron fluxes in the beam dump during operation produce activation of both coolant and beam stopper, which also suffers from corrosion into the coolant. The presence of radioisotopes in the cooling water leads to a radiological hazard.Water purification systems are located outside the accelerator vault and accumulate activated products during filtration, requiring a specific radiological shield to comply with target dose rates. Also devices containing large volume of activated cooling water, like N-16 decay pipes, require specific radioprotection analysis and design. This work identifies the most relevant radiation sources due to the activated cooling fluid, which may result in radiation doses to workers, and propose radioprotection measures into the design to mitigate their effect.  相似文献   

9.
In this study, activation cross sections were measured for the reaction of 232Th(n,2n)231Th (T1/2 = 25.5 h) by using neutron activation technique at six different neutron energies from 13.57 and 14.83 MeV. Neutrons were produced via the 3H(2H,n)4He reaction using SAMES T-400 neutron generator. Irradiated and activated high purity Thorium foils were measured by a high-resolution γ-ray spectrometer with a high-purity Germanium (HpGe) detector. In cross section measurements, the corrections were made for the effects of γ-ray self-absorption in the foils, dead-time, coincidence summing, fluctuation of neutron flux, low energy neutrons. For this reaction, statistical model calculation, which the pre-equilibrium emission effects were taken into consideration, were also performed between 13.57 and 14.83 MeV energy range. The cross sections were compared with previous works in literature, with model calculation results, and with evaluation data bases (ENDF/B-VII, ENDF/B-VI, JEFF-3.1, JENDL-4.0, JENDL-3.3, and ROSFOND-2010).  相似文献   

10.
We show the preparation of a pulsed 20 MeV proton beam at the Munich tandem accelerator which offers a fluence of more than 1 × 109 protons/cm2 being deposited in a beam spot smaller than 100 μm in diameter and within a time span of 0.9 ns fwhm. Such a beam is produced by an ECR type proton source using charge exchange in cesium vapor to obtain a beam of negative hydrogen of high brightness that is bunched, chopped, accelerated and then focused by the superconducting multipole lens of the microprobe SNAKE. Single beam pulses are generated in order to irradiate cell samples or tissue and to measure their biological effect in comparison to continuous proton or X-ray irradiation.  相似文献   

11.
Darwin glass is an impact glass resulting from the melting of local rocks during the meteorite impact that formed the 1.2 km diameter Darwin Crater in western Tasmania. These glass samples have small spheroidal inclusions, typically a few tens of microns in diameter, that are of great interest to the geologists. We have analysed one such inclusion in detail with proton microbeam ion beam analysis (IBA). A highly heterogeneous composition is observed, both laterally and in depth, by using self-consistent fitting of photon emission and particle backscattering spectra. With various proton energies near 2 MeV we excite the 12C(p,p)12C resonance at 1734 keV at various depths, and thus we can probe both the C concentration, and also the energy straggling of the proton beam as a function of depth which gives information on the sample structure. This inclusion has an average composition of (C, O, Si) = (28, 56, 16) mol% with S, K, Ca, Ti and Fe as minor elements and Cr, Mn, Ni, Cu, Zn and Br as trace elements. This composition includes, at specific points, an elemental depth profile and a density variation with depth consistent with discrete quartz crystals a few microns in size.  相似文献   

12.
In International Fusion Materials Irradiation Facility (IFMIF), intense neutron flux (4.5 × 1017 n/m2 s) with a peak energy of 14 MeV are produced by means of two deuteron beams with a total current of 250 mA and maximum energy of 40 MeV that strike a liquid Li target circulating in a Li loop. Major design requirement is to provide a stable Li jet at a speed of 10–20 m/s with a surface wave amplitude on the Li flow less than 1 mm for handling of an averaged heat flux of 1 GW/m2 under a continuous 10 MW deuterium beam deposition. The target system consists of a target assembly, a replaceable back-plate, a Li main loop and a Li purification loop. In July 2007, Engineering Validation and Engineering Design Activities (EVEDA) started under Broader Approach. In this paper, status of the engineering design of the IFMIF Li target system performed in 2007/2008 is described. The future EVEDA tasks to develop the target system are also summarized.  相似文献   

13.
Competitive 10Be measurements at energies as low as 0.75 MeV are now possible with the compact ETH AMS system TANDY. In this paper we describe and discuss the modifications that led to the significantly improved performance for 10Be at the 0.6 MV accelerator. Results from the first routine measurement show that 10Be on the upgraded TANDY is now fully competitive with larger AMS systems with respect to background and measurement precision. The total efficiency for 10Be is comparable to our large 6 MV Tandem system and thus sufficient for the full range of applications in the Earth and Environmental Sciences.  相似文献   

14.
The modified Van de Graaff accelerator with proton beam energy W ? 3 MeV has been installed and put into operation at the TMM laboratory in Kiev. The laboratory incorporates the nuclear probe (NP) beam line, coupled to this accelerator. A short version of an optimized probe-forming system (PFS) has been developed for the Kiev NP. The system is based on divided triplet of the magnetic quadrupole lenses (MQLs). This PFS has two working regimes for the probe operations. The results of numerical calculations of the geometrical and ion-optical parameters of the PFS are presented. It is shown that this versatile PFS is a promising design for a modern nuclear nano-probe. A new precision adjustable MQL has been designed. Three lenses, the slit systems and target chamber are manufactured and installed at the Kiev probe beam line. Also a new data acquisition system for the Kiev NP is being developed.  相似文献   

15.
In order to evaluate stopping cross-section and energy straggling of protons in compound material SiC and its constituents C and Si, resonant backscattering spectra have been measured using proton beams in an energy range 4.9–6.1 MeV per a 100 keV step. We have observed two sharp nuclear resonances at proton energies of 4.808 MeV by 12C and 4.879 MeV by 28Si. By systematic analyses of the resonance peak profiles, i.e., energy shift of the peak position and broadening of the peak width, the values of the stopping cross-section and the energy straggling have been deduced to be compared with SRIM-2006 and Bohr’s prediction.  相似文献   

16.
Activation cross-sections were measured at neutron energies from 13.6 to 14.9 MeV for the reaction 26Mg(n,α)23Ne. The production of relatively short-lived activity and the spectra accumulation have been carried out by the cyclic activation method. Corrections were made for the effects of gamma-ray attenuation, random coincidence summing (pulse pile-up), dead time, and scattered low energy neutron contribution. Statistical model calculations for which the pre-equilibrium emission effects are taken into consideration were also performed. Results were compared with the previous investigations.  相似文献   

17.
《Annals of Nuclear Energy》2005,32(12):1297-1304
For the first time, fission mass-yield distributions have been predicted based on an extended statistical model for fission cross section calculations. In this model, the concept of the multi-modality of the fission process has been incorporated. The three most dominant fission modes, the two asymmetric standard I (S1) and standard II (S2) modes and the symmetric superlong (SL) mode are taken into account. De-convoluted fission cross sections for S1, S2 and SL modes for 235,238U(n, f) and 237Np(n, f), based on experimental branching ratios, were calculated for the first time in the incident neutron energy range from 0.01 to 5.5 MeV providing good agreement with the experimental fission cross section data. The branching ratios obtained from the modal fission cross section calculations have been used to deduce the corresponding fission yield distributions, including mean values also for incident neutron energies hitherto not accessible to experiment.  相似文献   

18.
Fe ion implantation in GaN has been investigated by means of ion beam analysis techniques. Implantations at an energy of 150 keV and fluences ranging from 2 × 1015 to 1 × 1016 cm?2 were done, both at room temperature and at 623 K. Secondary Ions Mass Spectrometry was used to determine the Fe implantation profiles, whereas Rutherford Backscattering in channeling conditions with a 2.2 MeV 4He+ beam allowed us to follow the damage evolution. Particle Induced X-ray Emission in channeling conditions with a 2 MeV H+ beam was employed to study the lattice location of Fe atoms after implantation. The results show that a high fraction of Fe-implanted atoms are located in high symmetry sites in low fluence implanted samples, where the damage level is lower, whereas the fraction of randomly located Fe atoms increases by increasing the fluence and the resulting damage. Moreover, dynamical annealing present in high temperature implantation has been shown to favor the incorporation of Fe atoms in high symmetry sites.  相似文献   

19.
Thin films (d  1 μm) of hydrogenated amorphous silicon carbide (a-Si1?xCx:H), deposited by RF reactive magnetron sputtering with different carbon content x, have been implanted with high fluences (Φ = 1016–1017 cm?2) of high-energy (E = 0.2–1 MeV) He+ ions as the implant species. The induced structural modification of the implanted material results in a considerable change of its optical properties, best manifested by a significant shift of the optical absorption edge to lower photon energies as obtained from photo-thermal-deflection spectroscopy (PDS) data. This shift is accompanied by a remarkable increase of the absorption coefficient over one order of magnitude (photo-darkening effect) in the measured photon energy range (0.6–3.8 eV), depending on the ion fluence, energy and carbon content of the films. These effects could be attributed both to additional defect introduction and increased graphitization, as confirmed by Raman spectroscopy and infra-red (IR) optical transmission measurements. The optical contrast thus obtained (between implanted and unimplanted film material) could be made use of in the area of high-density optical data storage using focused high-energy He+ ion beams.  相似文献   

20.
Elastic cross sections for the 7Li + 27Al system were measured at laboratory energies between 7 and 11 MeV in steps of 0.25 MeV, and angles between 135° and 170° in steps of 5°. Excitation functions for the elastic scattering were measured using an array of eight Si surface-barrier detectors whereas a solid-state telescope was used to estimate and subtract background from other reactions. Contamination from α particles arising from the 7Li breakup process at Elab ? 10 MeV makes the use of these energies inadvisable for RBS applications. The present results are compared with previous data obtained at 165° (Elab ? 6 MeV), 140° and 170° (Elab ? 8 MeV). The experimental data were analyzed in terms of the Optical Model. Two different energy-independent potentials were found. These optical potentials allow an interpolation with physical meaning to other energies and scattering angles. The experimental cross sections will be uploaded to the IBANDL database.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号