首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
A fuzzy pulse discriminating system for electrical discharge machining   总被引:3,自引:0,他引:3  
In this paper, the use of fuzzy set theory to construct a new pulse discriminator in electrical discharge machining (EDM) is reported. The classification of various discharge pulses in EDM is based on the features of the measured gap voltage and gap current. To obtain optimal classification performance, a machine learning method based on a simulated annealing algorithm is adopted to automatically synthesize the membership functions of the fuzzy pulse discriminator. Experimental results have shown that EDM discharge pulses can be not only correctly but also quickly classified under varying cutting conditions using this approach.  相似文献   

2.
A novel high-speed dry electrical discharge machining (EDM) method was proposed in this study. Using this method, the material can be rapidly melted by extremely high discharge energy and flushed out of the discharge gap by high-pressure and high-speed air flow. The material removal rate (MRR) of dry EDM was significantly improved by the proposed method. The MRR of dry EDM is usually in tens mm3/min, whereas the MRR of the proposed method can be as high as 5162 mm3/min, which improves the MRR by 2nd to 3rd order of magnitude. Investigation was conducted systemically. The influences of work piece polarity, discharge current, pulse duration time, gas pressure, and electrode rotation speed on machining performance were studied. The machining mechanism of this method was thoroughly analyzed. Moreover, the re-solidified layer, surface morphology, elementary composition, and phase of AISI 304 stainless steel for high-speed dry EDM were also investigated. Theoretical and technical foundations were laid for the industry application of dry EDM.  相似文献   

3.
Near dry electrical discharge machining   总被引:4,自引:0,他引:4  
This study investigates the near dry electrical discharge machining (EDM) process. Near dry EDM uses liquid–gas mixture as the two phase dielectric fluid and has the benefit to tailor the concentration of liquid and properties of dielectric medium to meet desired performance targets. A dispenser for minimum quantity lubrication (MQL) is utilized to supply a minute amount of liquid droplets at a controlled rate to the gap between the workpiece and electrode. Wire EDM cutting and EDM drilling are investigated under the wet, dry, and near dry conditions. The mixture of water and air is the dielectric fluid used for near dry EDM in this study. Near dry EDM shows advantages over the dry EDM in higher material removal rate (MRR), sharper cutting edge, and less debris deposition. Compared to wet EDM, near dry EDM has higher material removal rate at low discharge energy and generates a smaller gap distance. However, near dry EDM places a higher thermal load on the electrode, which leads to wire breakage in wire EDM and increases electrode wear in EDM drilling. A mathematical model, assuming that the gap distance consists of the discharge distance and material removal depth, was developed to quantitatively correlate the water–air mixture's dielectric strength and viscosity to the gap distance.  相似文献   

4.
This study investigates the feasibility and optimization of electrical discharge machining for inspecting the machinability of W/Cu composites using the Taguchi method. W/Cu composites are a type of cooling material highly resistant to heat corrosion produced through powder metallurgy. As W/Cu composites are highly brittle, they are not suited to be machined of traditional machine manufacturing. This paper utilizes electrical discharge machining, which is thermal processing workpieces and not affected by mechanical properties of materials. This experiment utilizes the Taguchi method and L18 orthogonal table to obtain the polarity, peak current, pulse duration, duty factor, rotary electrode rotational speed, and gap-load voltage in order to explore the material removal rate, electrode wear rate, and surface roughness. The influence of each variable and optimal processing parameter will be obtained through ANOVA analysis and verified through experimentation to improve the process. The final step is to study the surface integrities of W/Cu composite, such as surface profile and heat-affected zone, the energy distribution transferring phenomenon of W/Cu composite, and the discharge phenomenon of tungsten and copper elements with electrical discharge machining.  相似文献   

5.
线切割加工质量的分析及改善措施   总被引:1,自引:0,他引:1  
线切割加工在模具制造业中常用于加工精密、微细的模具零件。通过介绍线切割的加工原理,研究了线切割加工过程容易产生的加工质量缺陷,分析了加工面变形与开裂、变质层及表面粗糙度产生的原因,提出了进一步提高工件表面质量的改善措施和方法。实践中可以通过合理选材、优化电参数、选择正确的加工路线等方面综合分析和控制线切割加工,在保证生产率的前提下,改善和提高线切割加工质量。  相似文献   

6.
Power metallurgy tool electrodes for electrical discharge machining   总被引:2,自引:0,他引:2  
Electrodes in electrical discharge machining (EDM) can be compared with cutting tools in conventional machining. Tool performance is one of the important factors that determine the quality of the machined component. Due to the ease of manufacturing and control over the properties of electrodes, the powder metallurgy (P/M) technique has an advantage over other methods of electrode fabrication. P/M electrodes affect the micro- and macrovariables in EDM and the properties of P/M electrodes can be controlled over a wide range by adjusting the compacting and sintering conditions. The performance of P/M electrodes on various aspects of EDM operation is discussed in this paper.  相似文献   

7.
The last decade has seen an increasing interest in the novel applications of electrical discharge machining (EDM) process, with particular emphasis on the potential of this process for surface modification. Besides erosion of work material during machining, the intrinsic nature of the process results in removal of some tool material also. Formation of the plasma channel consisting of material vapours from the eroding work material and tool electrode; and pyrolysis of the dielectric affect the surface composition after machining and consequently, its properties. Deliberate material transfer may be carried out under specific machining conditions by using either composite electrodes or by dispersing metallic powders in the dielectric or both. This paper presents a review on the phenomenon of surface modification by electric discharge machining and future trends of its applications.  相似文献   

8.
Wire breaking is a serious problem in the application of wire electrical discharge machining (WEDM). A WEDM sparking frequency monitoring and control system based on the characteristics of the voltage waveform of WEDM is developed. A new self-learning fuzzy controller is proposed to control the sparking frequency at a safe level by regulating the pulse off-time in real time for avoiding wire rupture and maintaining a state of high metal removal rate. The developed control strategy is tested under the conditions of cutting a workpiece with continuous sharp angles, a change in workpiece height during machining process, and machining with a high feed-rate. Experimental results show that this monitoring and control system can control the sparking frequency at a predetermined level without the risk of wire rupture.  相似文献   

9.
《CIRP Annals》2022,71(1):177-180
Electrical discharge machining (EDM) is a versatile unconventional machining process allowing high precision manufacturing. Due to the thermal main active principle, the process-induced heat affected rim zone always needs to be particularly considered regarding its characteristics as the resulting surface integrity has to fulfill the needed functional properties for advanced applications. Today, no deterministic model is available especially for the residual stress prediction. As consequence, current process design is based on experience and heuristic optimization. The paper therefore mechanistically links the material modification and the process-induced load. Inversion of the according process signature component finally allows model-based process design.  相似文献   

10.
11.
气中放电加工电极夹具的研制   总被引:3,自引:1,他引:2  
介绍了一种气中放电加工电极夹具的结构及工作原理,阐述了设计要点,给出了设计过程和应用实例。该电极夹具克服了一般电极夹具不能旋转、不能密封的缺点,实际应用效果良好。  相似文献   

12.
The high temperature gradients generated at the gap during electrical discharge machining (EDM) result in large localized thermal stresses in a small heat-affected zone. These thermal stresses can lead to micro-cracks, decrease in strength and fatigue life and possibly catastrophic failure. A finite element model has been developed to estimate the temperature field and thermal stresses due to Gaussian distributed heat flux of a spark during EDM. First, the developed code calculates the temperature in the workpiece and then the thermal stress field is estimated using this temperature field. The effects of various process variables (current and duty cycle) on temperature distribution and thermal stress distribution have been reported. The results of the analysis show high temperature gradient zones and the regions of large stresses where, sometimes, they exceed the material yield strength.  相似文献   

13.
The phenomenon of hydrophobicity observed in such surfaces as lotus leaves is typically manifest by hierarchical structures on low-energy surfaces. Sustained interest in fabricating hydrophobic surfaces has resulted in a myriad of processes, which are but limited by their largely referring to soft materials and/or involving multiple process steps. The present work explored the application of electrical discharge machining (EDM) for the single-step manufacture of durable, metallic hydrophobic surfaces. Simple sink EDM in a hydrocarbon dielectric, with no special process kinematic or tooling requirements, is demonstrated to rapidly generate surfaces that are intrinsically water repellent, with contact angles approaching 150°.  相似文献   

14.
This study explores the feasibility of removing the recast layer (RCL) using etching and mechanical grinding for Ni-based superalloy materials by means of electrical discharge machining (EDM). The EDM process is widely used for machining hard metals and performing specific tasks that cannot be achieved using conventional techniques. The sparks produced during the EDM process melt the metal's surface, which then undergo ultra rapid quenching. A layer forms on the workpiece surface defined as a recast layer after solidification. Molds and dies desire to remove the RCL even though it is hard and has good matrix adherence.This experiment is divided into three stages. The first stage acquires a thick recast layer by using EDM with a larger discharging energy. A thick recast layer is essential for verification of the EDM technique for observing the recast process. Thus, this work applies the Taguchi L18 analytical method to acquire the thick recast layer. The second stage optimizes the recast layer removal technique. Therefore, the thick recast layer is intentionally made in the first stage. This work determines the second stage setting using Taguchi's recommendation. Thus, the L9 orthogonal array sets up the etching and mechanical grinding parameters and observes the recast layer removal quantity analysis. Finally, an experiment studies the surface characteristics of Ni-based superalloys, such as composition and micro-hardness after removing the recast layer.  相似文献   

15.
Workpiece surface modification using electrical discharge machining   总被引:1,自引:0,他引:1  
Electrical discharge machining (EDM) is a widely used process in the mould / die and aerospace industries. Following a brief summary of the process, the paper reviews published work on the deliberate surface alloying of various workpiece materials using EDM. Details are given of operations involving powder metallurgy (PM) tool electrodes and the use of powders suspended in the dielectric fluid, typically aluminium, nickel, titanium, etc. Following this, experimental results are presented on the surface alloying of AISI H13 hot work tool steel during a die sink operation using partially sintered WC / Co electrodes operating in a hydrocarbon oil dielectric. An L8 fractional factorial Taguchi experiment was used to identify the effect of key operating factors on output measures (electrode wear, workpiece surface hardness, etc.). With respect to microhardness, the percentage contribution ratios (PCR) for peak current, electrode polarity and pulse on time were ˜24, 20 and 19%, respectively. Typically, changes in surface metallurgy were measured up to a depth of ˜30 μm (with a higher than normal voltage of ˜270 V) and an increase in the surface hardness of the recast layer from ˜620 HK0.025 up to ˜1350 HK0.025.  相似文献   

16.
Polycrystalline diamond (PCD), with its superior wear and corrosion resistance, is an ideal material for micro-hole parts in the field of microfabrication. This study investigated the micro-hole machining performance for PCDs by micro-electrical discharge machining (micro-EDM). A series of experiments were carried out to investigate the proper machining polarity and the impacts of micro-EDM parameters on machining performance. Experimental results indicate that negative polarity machining is suitable for micro-EDM of PCDs because of the protection brought over by the adhesion sticking to the electrode. An appropriate volume of adhesion on the tool electrode can help to increase the material removal rate (MRR) and reduce the relative tool wear ratio (TWR). By contrast, an excessive volume of adhesion can lead the machining into a vicious circle in which micro-holes are drilled with overlarge diameters. An optimal set of machining conditions was chosen among the investigated ranges of nominal capacitance and electrode rotation speed. An exemplary PCD through-hole, machined under the chosen optimal machining conditions, shows satisfactory machining results.  相似文献   

17.
18.
To develop a hybrid process of abrasive jet machining (AJM) and electrical discharge machining (EDM),the effects of the hybrid process parameters on machining performance were comprehensively investigated to confirm the benefits of this hybrid process.The appropriate abrasives delivered by high speed gas media were incorporated with an EDM in gas system to construct the hybrid process of AJM and EDM,and then the high speed abrasives could impinge on the machined surface to remove the recast layer caused by EDM process to increase the efficiency of material removal and reduce the surface roughness.In this study,the benefits of the hybrid process were determined as the machining performance of hybrid process was compared with that of the EDM in gas system.The main process parameters were varied to explore their effects on material removal rate,surface roughness and surface integrities.The experimental results show that the hybrid process of AJM and EDM can enhance the machining efficiency and improve the surface quality.Consequently,the developed hybrid process can fit the requirements of modern manufacturing applications.  相似文献   

19.
Silicon slicing technology is an undergoing process and its performance improvements meet the ever-challenging and versatile demands. A new attempt to apply the WEDM strategy to slice the semiconductor materials is studied. The barriers from unusual material characteristics are to be conquered to make this idea realizable. The existing WEDM technology is utilized to slice the heavy-doped silicon ingot and its feasibility is examined. The machining rate and surface roughness are measured under various current on times and servo voltages in both the water immersed and water flushing WEDM machines. If small current on time is collocated with proper off time and lower gap voltage sensitivity under automatic feed mode, the stable area machining rate of around 76 mm2/min can be attained, and the Ra value is 3.6 μm or so which is acceptable if the following polishing procedure is considered. The thickness of defects to be polished can be predicted from the SEM photographs of the cross-sections of the sliced wafers. If the wire diameter is 0.25 mm and the wafer thickness is 1 mm, the portion of material loss including the kerf and the amount to be polished is under 26%.  相似文献   

20.
本文利用热压烧结工艺制备了含有20vol%~50vol%SiC的放电加工用金属结合剂工具电极。采用非均相沉淀包裹法制得Cu包SiC复合粉体。并对试样的气孔率、电阻率、抗弯强度进行了研究,结果表明,随着SiC含量的增加,试样气孔率和电阻率提高,而抗弯强度下降;在20vol%-50vol%SiC含量范围内,采用直接混合法和包裹法制备的试样具有大致相同的气孔率、电阻率,但包裹法的强度却大大提高。用X—ray衍射、扫描电镜(SEM)、能谱分析(EDAX)等测试手段对试样进行了成分和微观形貌分析。研究结果表明,包裹法制得的Cu结合SiC试样,SiC分散更均匀,并通过形成Cu2O—SiO2共熔物(玻璃相)来提高SiC和Cu的界面结合强度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号