共查询到20条相似文献,搜索用时 31 毫秒
1.
S. Alamolhoda S. Heshmati-Manesh A. Ataie S. Sheibani 《Journal of Materials Science》2011,46(16):5512-5518
In this research, TiAl matrix nano-composite with Al2O3 reinforcement was obtained by mechanical activation of TiO2 and Al powder mixture and its subsequent heat treatment. Effect of Nb and/or Nb2O5 additions on the process was investigated. Structural changes and thermal behavior of the samples were evaluated by X-ray diffraction and differential thermal analysis, respectively. Moreover, the microstructure was characterized by transmission electron microscopy. The results confirmed the partial dissolution of Nb in Al during the milling stage in the Nb-added samples. The reaction mechanism during heat treatment in the sample without any additives was a two-stage process that was quite similar to the sample with Nb addition. However, Nb2O5 addition led to the progress of reaction through a single stage and with a higher rate. Both additives promoted formation of the Ti3Al phase in the final products. The results confirmed the formation of nano-sized Al2O3 particles in a nano-crystalline Ti–Al matrix with a mean crystallite size of 30 nm. 相似文献
2.
Arun Premnath 《Particulate Science and Technology》2013,31(6):707-715
ABSTRACTHybrid Metal Matrix Composites (MMCs) are a new class of composites, formed by a combination of the metal matrix and more than one type of reinforcement having different properties. Machining of MMCs is a difficult task because of its heterogeneity and abrasive nature of reinforcement, which results in excessive tool wear and inferior surface finish. This paper investigates experimentally the addition of graphite (Gr) on cutting force, surface roughness and tool wear while milling Al/15Al2O3 and Al/15Al2O3/5Gr composites at different cutting conditions using tungsten carbide (WC) and polycrystalline diamond (PCD) insert. The result reveals that feed has a major contribution on cutting force and tool wear, whereas the machined surface roughness was found to be more sensitive to speed for both composite materials. The incorporation of graphite reduces the coefficient of friction between the tool–workpiece interfaces, thereby reducing the cutting force and tool wear for hybrid composites. The surface morphology and worn tool are analyzed using scanning electron microscope (SEM). The surface damage due to machining extends up to 200 µm for Al/15Al2O3/5Gr composites, which is beyond 250 µm for Al/15Al2O3 composites. 相似文献
3.
采取铝热原位合成的方法,以钛白粉和铝粉为原料原位合成制备TiAl/Al2O3复合材料。通过XRD分析了不同温度下反应过程及烧结样品的物相形成规律。分析结果表明:在750℃条件下反应时,原料中心部分变成了黑色,反应生成了钛的低价氧化物。随着温度的升高逐渐形成了部分TiAl金属间化合物和Al2O3。当温度达到1250℃时,反应比较充分,主要生成了TiAl金属间化合物和Al2O3,原位合成了TiAl/Al2O3复合材料。 相似文献
4.
原位热压合成Nb掺杂Al2O3/TiAl复合材料 总被引:7,自引:0,他引:7
利用Al-Ti-TiO2-Nb2O5体系的放热反应,原位热压合成了Nb掺杂Al2O3/TiAl复合材料.借助DTA结合XRD探讨了Al-Ti-TiO2-Nb2O5体系的反应过程,并采用XRD、OM和SEM研究了复合材料的物相组成及显微结构.结果表明:Al熔化的同时,体系发生了Al和Nb2O5的铝热反应,生成了NbO2和Nb等中间产物,并放出了较多热量,这些热量促使Ti和Al较早化合生成TiAl3,随即引发Al和TiO2较早的还原反应,进而促使材料在较低温度下致密烧结;产物由γ-TiAl、α2-Ti3Al、Al2O3和NbAl3相构成,Al2O3颗粒分布于基体交界处,存在一定的团聚;Nb2O5的引入,对基体γ-TiAl相和α2-Ti3Al相的的分布有一定的影响,使得基体晶粒细化,较好地改善了材料的力学性能. 相似文献
5.
《Materials Research Bulletin》2006,41(4):791-803
Monolithic Al2O3 and Al2O3/SiC nanocomposite powders were prepared by sol–gel processing. The process involved the precipitation of Al(NO3)3·9H2O with NH4OH in excess water to form boehmite (AlOOH). XRD indicates that the subsequent thermal reaction proceeds by the phase transformation sequence AlOOH, γ-, δ-, θ-, to α-Al2O3. The 27Al NMR spectra indicate a gradual increase in the proportion of Al in the tetrahedral sites of the γ-, δ- and θ-Al2O3 formed at increasing calcination temperatures. Complete transformation to octahedral Al (α-Al2O3) is marked by the abrupt disappearance of tetrahedral Al. Al2O3/SiC nanocomposite powders were prepared by adding α-SiC powder to the boehmite precursor at the precipitation stage. Upon heating, the 29Si NMR spectra of the Al2O3/SiC powders reveal α-SiC, Al2O3·xSiO2 and SiO2 phases. Stable α-Al2O3 and α-Al2O3/SiC nanocomposite powders are formed at 1200 and 1300 °C, respectively. It appears likely that the presence of SiC modifies the thermal behaviour of the Al2O3 in the nanocomposites by stabilising the Al2O3 phases with concomitant oxidation of SiO2. 相似文献
6.
7.
8.
Jianguo YANG Hongyuan FANG Xin WANState Key Laboratory of Advanced Welding Production Technology Harbin Institute of Technology Harbin China 《材料科学技术学报》2005,21(5):782-784
1.IntroductionTo improve the mechanical properties and relieve mis-matches between the filler metals and base materials,the particulates of superalloys,ceramic or carbon fiberswere added into the conventional brazing filler metal toform composite filler material.The method has beenused in aero-engine component repairing[1,2],fine castcomponent joining[3],wide clearance butt jointing[4],ce-ramic brazing[5,6]and electronic package[7].However,the method was used mostly in metal brazing.The mi-cro… 相似文献
9.
Al2O3 and Al2O3/ZrO2 composites have been fabricated by slip casting from aqueous suspensions. The physical and structural characteristics of the starting powders, composition of the suspensions, casting behaviour, microstructure of the green and fired bodies and the mechanical properties of the products were investigated. The addition of ZrO2 to Al2O3 leads to a significant increase in fracture toughness when ZrO2 particles are retained in the tetragonal form (transformation-toughening mechanism) but when microcracking (due to the spontaneous transformation of ZrO2 from the tetragonal phase to the monoclinic one) is dominant, an excellent toughness value is accompanied by a drastic drop in strength and hardness. 相似文献
10.
11.
M. Ksiazek N. Sobczak B. Mikulowski W. Radziwill B. Winiarski M. Wojcik 《Journal of Materials Science》2005,40(9-10):2513-2517
The subject of the work was to study the effect of Ti thin film on alumina ceramic on mechanical strength and fracture character of Al2O3/Al/Al2O3 joints. The joints were formed by liquid state bonding of alumina substrates covered with titanium thin film of 800 nm thickness using Al interlayer of 30μm thickness at temperature of 973 K in a vacuum of 0.2 mPa for 5 min. The bend strength was measured by four–point bending test at room temperature. Scanning and transmission electron microscopy were applied for detailed characterization of interface structure and failure character of fractured joint surfaces. Result analysis has shown that application of the Ti thin film on alumina leads to decrease of bond strength properties of Al2O3/Al/Al2O3 joints along with the change either of structure and chemistry of interface or of failure character. 相似文献
12.
13.
利用氧对金属Ti、Al粉的部分氧化,原位合成了含有氧化铝晶须的Al2O3/Ti-Al复合材料,通过XRD和SEM等测试手段,发现Al2O3晶须呈网状交叉分布于基体内部的孔隙中.分析了晶须的生成机理,认为氧化铝晶须是通过VLS机理生成,复合材料的原始组成和温度对晶须的显微型貌有直接的影响:随原始组成中铝含量的增加,产物中晶须的数量总体上是在递增的,且发达程度逐渐提高;热处理温度对晶须直径有直接影响,温度升高可以增加晶须直径. 相似文献
14.
Weiwei Zhu Jichun Chen Chuanyong Hao Jinsong Zhang 《材料科学技术学报》2014,30(9):944-948
ZnO-Al2O3-B2O3-SiO2 (ZABS) glass powder was used as interlayer to join alumina ceramics. The effect of joining temperature on the microstructure and strength of joints was investigated. The results showed that the ZABS glass can react with alumina substrate to form a layer of ZnAl2O4 at Al2O3/glass interface. Bending test exhibited that low joining temperature (1150℃) led to low joint strength due to the formation of pores in the interlayer, originated by high viscosity of the glass. High joining temperature (1250 ℃) also resulted in low joint strength, because of large CTE (coefficient of thermal expansion) mismatch between amorphous interlayer and alumina substrate. Therefore, only when the joining temperature was appropriate (1200℃), defect-free interface and high joint strength can be obtained. The optimum joint strength reached 285 MPa, which was the same as the base material strength. 相似文献
15.
G. M. Gladysz M. Schmücker H. Schneider K. K. Chawla D. L. Joslin M. K. Ferber 《Journal of Materials Science》1999,34(17):4351-4355
All oxide composites (reinforcement and matrix both being oxides) exhibit high temperature oxidation resistance in addition to high strength and hardness. A major drawback of these materials is that the oxide fiber and oxide matrix tend to react, which strengthens the interface and therefore drastically reduces the damage tolerance. To overcome this problem, a mechanically weak interphase material, which also serves as a diffusion barrier, is generally used. One such materials system is tin dioxide (SnO2) in alumina-based composites. Previous attempts to fabricate such alumina matrix composites have been unsuccessful due to the higher temperatures needed to densify Al2O3 coupled with the fact that SnO2 decomposes to SnO in reducing environments. SnO has a relatively low melting point (1125 °C). In this paper we report the successful fabrication of Al2O3/SnO2, laminated composites and some observations on microstructural and mechanical characterization of the laminates. As expected from the phase diagram, no chemical compound formation was observed between Al2O3 and SnO2 which means that no primary chemical bonding developed between individual laminae. TEM observations showed, however, a strong mechanical interlocking at the SnO2/Al2O3 interfaces. In spite of the relatively strong interfacial bond, cracks did deflect. Our microstructural studies showed that SnO2 served as a weak interphase material. 相似文献
16.
《Composites》1993,24(3):282-287
Fatigue damage development in two aluminium matrix (Al7SiO.6Mg and Al5Si-3Cu1Mg) composites reinforced with discontinuous Al2O3 fibres has been monitored by means of acoustic emission (AE). The AE signals (RMS) recorded during the tests clearly exhibit three distinct stages which correspond to crack initiation, dominant crack formation and stable propagation. Generally speaking, the cracks initiated at a high load level form close together and a dominant crack forms easily. By contrast, at a low load, initiated cracks are widely separated and the formation of a dominant crack is difficult. If there are large defects in the composite, the first stage is absent, even at low load. In the first stage, little change in microstructure and modulus of the composite is observed; in the second, fibre fracture, interface debonding and matrix cracking occur and there are often sinusoidal cracks in the matrix; in the last stage, the principal characteristic is stable propagation of the dominant crack. The degradation of the elastic modulus of the composite in the last two stages is small. 相似文献
17.
18.
本研究探索了光悬浮区熔法制备Al2O3/Er3Al5O12(ErAG)和Al2O3/Yb3Al5O12(YbAG) 定向凝固共晶陶瓷。在10 mm/h的抽拉速率下成功获得了凝固组织均匀、内部无裂纹或孔洞的高质量共晶陶瓷。通过高分辨三维X射线衍射仪研究了Al2O3和RE3Al5O12在三维空间的分布与组织结构; 利用电子背散射衍射技术分析了定向凝固末期Al2O3和RE3Al5O12两相的晶体学择优取向和相界面关系。力学性能表征结果显示, Al2O3/ErAG和Al2O3/YbAG具有优异的力学性能, 二者的维氏硬度分别为(13.5±0.4)和(12.8±0.1) GPa;断裂韧性分别为(3.0±0.2)和(3.2±0.1) MPa·m1/2。 相似文献
19.
Investigations of bilayer and trilayer Al2O3/SiO2 and Al2O3/HfO2/SiO2 antireflective coatings are presented in this paper. The oxide films were deposited on a heated quartz glass by e-gun evaporation in a vacuum of 5 × 10?3 [Pa] in the presence of oxygen. Depositions were performed at three different temperatures of the substrates: 100 °C, 200 °C and 300 °C. The coatings were deposited onto optical quartz glass (Corning HPFS). The thickness and deposition rate were controlled with Inficon XTC/2 thickness measuring system. Deposition rate was equal to 0.6 nm/s for Al2O3, 0.6 nm ? 0.8 nm/s for HfO2 and 0.6 nm/s for SiO2. Simulations leading to optimization of the thin film thickness and the experimental results of optical measurements, which were carried out during and after the deposition process, have been presented. The optical thickness values, obtained from the measurements performed during the deposition process were as follows: 78 nm/78 nm for Al2O3/SiO2 and 78 nm/156 nm/78 nm for Al2O3/HfO2/SiO2. The results were then checked by ellipsometric technique. Reflectance of the films depended on the substrate temperature during the deposition process. Starting from 240 nm to the beginning of visible region, the average reflectance of the trilayer system was below 1 % and for the bilayer, minima of the reflectance were equal to 1.6 %, 1.15 % and 0.8 % for deposition temperatures of 100 °C, 200 °C and 300 °C, respectively. 相似文献
20.
M. Sharifitabar A. Sarani S. Khorshahian M. Shafiee Afarani 《Materials & Design》2011,32(8-9):4164-4172
In this research, microstructure and mechanical properties of 5052Al/Al2O3 surface composite fabricated by friction stir processing (FSP) and effect of different FSP pass on these properties were investigated. Two series of samples with and without powder were friction stir processed by one to four passes. Tensile test was used to evaluate mechanical properties of the composites and FSP zones. Also, microstructural observations were carried out using optical and scanning electron microscopes. Results showed that grain size of the stir zone decreased with increasing of FSP pass and the composite fabricated by four passes had submicron mean grain size. Also, increase in the FSP pass caused uniform distribution of Al2O3 particles in the matrix and fabrication of nano-composite after four passes with mean cluster size of 70 nm. Tensile test results indicated that tensile and yield strengths were higher and elongation was lower for composites fabricated by three and four passes in comparison to the friction stir processed materials produced without powder in the similar conditions and all FSP samples had higher elongation than base metal. In the best conditions, tensile strength and elongation of base material improved to 118% and 165% in composite fabricated by four passes respectively. 相似文献