首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Biosourced or biodegradable polymers like poly(lactic acid) (PLA) are often base-material for tissue-engineered scaffolds. However, in most of the cases, their bioadhesion properties are not satisfactory. Since the adhesion is controlled both by roughness and surface chemistry, PLA films were textured by applying the breath figure procedure and, then, plasma-treated. Depending on physicochemical characteristics of the breath figure technique, nice hexagonal structures were obtained. Their surface properties, i.e. hydrophobic–hydrophilic balance were controlled by plasma modification. However, their surface decoration could be only preserved with some specific plasma parameters depending on the applied energy and also on the induced surface chemistry.  相似文献   

3.
The surfaces of poly(l-lactic acid) (PLLA) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) were modified by oxygen and nitrogen plasma treatments. The physical and chemical surface characteristics were evaluated by contact angle tests, scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). The plasma treatments caused an increase in both contact angle and roughening, altered the surface morphology, inserted polar groups, and, consequently, enhanced the hydrophilicity for both PLLA and PHBV polymers.  相似文献   

4.
Porous nanocomposite scaffolds of poly(l-lactic acid) (PLA), loaded with TiO2 nanoparticles, were prepared by thermally induced phase-separation (TIPS). The preparation procedure induced crystalline polymer structures (with degree of crystallinity up to 51%) with no evidence of residual solvent, as confirmed by thermal analysis. Scaffold porosity, distribution of the nanofiller and shape of the pores were investigated by X-ray micro computed tomography (μ-CT) and scanning electron microscopy (SEM). The produced scaffolds with porosity of 86 ± 2% have interconnected open tubular pores with diameter and length in the ranges 40–80 μm and 200–400 μm respectively. The inorganic TiO2 nano-additive is well dispersed in the scaffold walls, with only a small fraction of micrometric aggregates observable. All investigated polymer scaffolds display similar compressive moduli (between 2.1 and 2.8 MPa). Thermogravimetry (TGA), wide angle X-ray diffraction (XRD) and SEM analyses run on scaffolds subjected to in vitro mineralization tests showed that PLA scaffolds loaded with TiO2 develop an amount of hydroxyapatite four times higher than that of plain PLA, thus assessing that titania nanoparticles confer improved bioactivity to the scaffolds.  相似文献   

5.
The application of solid polymer electrolytes as dual-function electrolyte/adhesive components in electrochromic devices and the preliminary characterization of the resulting prototype displays is described in this paper. An asymmetric device configuration, represented schematically as glass/ZnO:Ga2O3/WO3/polymer electrolyte/ZnO:Ga2O3/glass, was chosen.Electrolytes with compositions of n between 3 and 10, where n represents the molar ratio of poly(trimethylene carbonate), p(TMC), ((CO)OCH2CH2CH2O), units per guest lithium ion, were prepared by solvent casting. The electrochromic switching performance was characterized as a function of salt type and salt concentration.The average transmittance in the visible region of the spectrum was above 63% for all the bleached samples characterized. After coloration the structures assembled with both p(TMC)nLiClO4 and p(TMC)nLiBF4 presented an average transmittance in the visible wavelength region above 39%.  相似文献   

6.
《Composites Science and Technology》2007,67(11-12):2478-2484
The interfacial shear strength (IFSS), evaluated by single fibre pull-out tests was quantified for various biopolymer-flax fibre composites that were modified with additives. The additives included a plasticiser (glycerol triacetate) (GTA) absorbed onto/into the fibres, 4,4′-thiodiphenol (TDP) that is capable of forming hydrogen bonds between the matrix and cellulose from the fibres, and a hyperbranched polyester (HBP) to impart improved fracture toughness. Fibres were washed with acetone to remove the surface impurities and dried under vacuum before absorption of plasticiser and adsorption of thiodiphenol. It was found that the different additives significantly influenced the IFSS for the biopolymer-flax fibre systems while extraction with acetone had a no effect on the IFSS compared with the untreated fibres. The use of TDP imparted the most significant increase in IFSS whilst the HBP had an opposing effect. The use of ESEM corroborated with the findings of the single fibre pull-out tests.  相似文献   

7.
Cellulose nanofibrils (CNFs) were blended with poly(l-lactic acid) (PLLA) to produce CNFs/PLLA composite solid foams. The dispersed CNFs’ phase was partially embedded in the PLLA matrix. The CNFs not only reduced the water contact angle of the composite, but also induced the formation of hydroxyapatite (HA) on the walls of its inner pores. After incubation for 7 days in 3× simulated body fluid, a large number of HA particles were formed throughout the CNFs/PLLA composite foams. HA particles have diameters ranging from 200 nm to 2 μm and a Ca/P ratio of 1.42. The spatial distribution of calcium and phosphorus elements was uniform. A porosity of approximately 92 % was achieved after mineralization of the CNFs/PLLA composite foams. The mass of HA grown over CNFs/PLLA foams increased faster than in the case of PLLA foams. The ternary polymeric foams have potential applications in tissue engineering.  相似文献   

8.
Biobased materials developed in conjunction with nanotechnology are poised to achieve a significant presence in the world market for polymeric materials. An example of an engineering polymer that can be partially derived from biomass is poly(trimethylene terephthalate). One of its raw materials, 1,3-propanediol, can be derived from corn sugar. In the present study we used a fully petroleum-based resin as an analog to the biobased material. Five organically modified montmorillonite clays were characterized via moisture uptake studies to determine the hydrophilic/hydrophobic nature of their surfaces. Nanocomposites were produced via melt compounding followed by injection molding with 5 wt.% organoclay loading to determine which modification gave the best balance of mechanical and thermal properties. It was found that the tensile modulus increased by up to 35% and the tensile stress at break by up to 50%. The heat deflection temperature of the nanocomposites versus the neat polymer increased by up to 33 °C. From these results, one organoclay was selected for detailed study over a loading range of 0–5 wt.%. The testing revealed that over this range, changes in the mechanical properties may go through a maximum (e.g. strength) or increase/decrease to a plateau (e.g. modulus, elongation at break). X-ray diffraction and transmission electron microscopy were also used to characterize the nature of the organoclay/polymer interaction. Biobased poly(trimethylene terephthalate)/organoclay nanocomposites are expected to exhibit properties similar to the petroleum-based resin.  相似文献   

9.
针对聚三亚甲基碳酸酯(PTMC)内皮细胞相容性不足的特点,通过在其表面沉积聚多巴胺涂层并固定精氨酸-谷氨酸-天冬氨酸-缬氨酸(REDV)多肽改善PTMC的细胞相容性。水接触角测试表明PTMC表面沉积聚多巴胺及固定REDV后亲水性得到显著改善;原子力显微镜观察可以发现相比于PTMC,沉积聚多巴胺及固定REDV后的表面粗糙度明显增加;QCMD结果显示表面固定的REDV密度可达到98.4 ng/cm2,证明REDV可实现对PTMC薄膜的固定修饰。体外内皮细胞和平滑肌细胞粘附与增殖评价表明REDV改性的PTMC薄膜可促进内皮细胞的粘附与增殖,但对平滑肌细胞粘附增殖的促进作用并不显著。  相似文献   

10.
We have investigated the correlation between the structural properties of ZnO nanoparticles (NPs) and their toxicity to mesenchymal stem cells (C2C12 cell line) and macrophage-derived cells (RAW 264.7 cell line). Nanopowders of grain size ranging between 5 nm and 50 nm were prepared by chemical route. Their structural properties were characterized extensively by X-ray Diffraction (XRD) and High Resolution Transmission Electron Microscopy (HRTEM). The XRD spectra showed that 50 nm sized NPs are well crystallized and present a preferential orientation along the direction normal to the (001) plane while the HREM observations revealed that most of the large size (50 nm) crystallized nanoparticles have polygonal shape which is consistent with a texture of along [001] direction. The toxicity tests showed that [001] large textured NPs have higher toxicity to inflammatory cells than nanoparticles of low crystallinity and much smaller size (5 nm). In addition, NPs have cytotoxic effects on inflammatory cells at concentration as low as 0.05 mM while ten times higher concentrations did not have significant cytotoxic effects on cells representing mesenchymal tissues. These observations are explained by the enhanced generation of Reactive Oxygen Species (ROS) at the (0001) polar surface of ZnO NP. These results provide a direct evidence of the correlation between the toxicity and the surface texture of the oxide nanoparticles. Similar correlation has been reported for the photocatalytic properties of ZnO nanoparticles.  相似文献   

11.
A simple method was developed to fabricate nano-patterned protein layers on poly (lactic acid) (PLA) surface by dewetting method. It was found that nano-patterned protein layers were formed on PLA surface by slow drying in high humidity. The influence of wettability and viscoelastic properties of substrates were also investigated. As a result, typical spinodal dewetting patterns formed for BSA. However, network structures were obtained for collagen at acidic condition and well-oriented fibrils at neutral pH. It was attributed to dewetting on hydrophobic substrate as well as the plasticity and variety of collagen self-assemblies.  相似文献   

12.
The effect of ramie fiber, flame retardant and plasticizer on sound absorption property of ramie fiber reinforced PLLA composites was investigated. We used press molding process to prepare the ramie fiber/PLLA composites, with short ramie fiber and ramie plain weave fabric as the reinforcement. The dispersivity of flame retardant ammonium polyphosphate (APP) was indirectly tested by thermogravimetric analysis (TGA). The result of sound absorption property measurement shows that the composites with short ramie fiber have better sound absorption property than the ramie fabric reinforced PLLA composites. And the addition of APP and plasticizer poly(butylene adipate-co-terephthalate) (PBAT) improves the sound absorption property of ramie fabric/PLLA composites. Moreover, morphological studies by scanning electron microscopy (SEM) demonstrate the micro-phase separation in the PBAT/PLLA composites and the porosity of the single ramie fiber bundle. The results suggest that these special structures are the main reason for the better sound absorption property.  相似文献   

13.
The crystal morphology, impact strength and nonisothermal crystallization kinetics of poly(trimethylene terephthalate)/maleinized poly(ethylene-octene) (PTT/PEO-MA) copolymer blends were studied by using the polarized optical microscopy, impact tester and differential scanning calorimetry (DSC). Avrami theory modified by Jeziorny, Ozawa and Mo theories were used to study the non-isothermal crystallization kinetics of the blends, respectively. The results suggest that these methods are suitable for analyzing the crystallization kinetics of the PTT/PEO-MA blends. The PEO-MA component, serving as a nucleation agent in blends, can increase the start crystallization temperatures and accelerate the crystallization rate of the blends. The crystal dimensions are predominantly three-dimensional growths, judged from the Avrami exponent n and the Ozawa exponent m, but the spherulites in blends are much smaller than those in pure PTT. The crystallization active energy suggests that the PEO-MA component can make the PTT component easy to crystallize in blends. The blend has the highest Izod impact strength as PEO-MA content is 3 wt.%. Considering both the crystallization kinetic analyses results and the crystal morphology of the blends, the modified Avrami method is believed to be the most useful in reflecting the crystallization of the blends.  相似文献   

14.
Articular cartilage has a limited capacity to repair itself, and conventional therapeutic approaches have shown to have limited success as they are deficient and inconsistent in long-term repair. Tissue engineering has shown to be an alternative route to regenerate articular defects. In this work, new bi-layered scaffolds are developed in order to enhance the integration between the engineered cartilage tissue and the corresponding subchondral bone. The concept includes the use of a common polymer in both sides, poly(l-lactic acid), PLLA, to increase the bonding between them, and the use of compression moulding followed by particle leaching to process porous scaffolds with controllable porosities. A compact layer could be observed between the two layers that could be useful for independent cell culturing of the developed osteochondral constructs. A blend of starch and PLLA was used in the cartilage side, which was found to possess adequate hydration capability. For the bone region, where more stiffness and strength was required, PLLA reinforced with hydroxyapatite was used. Preliminary bioactivity tests demonstrated that the bone-layer could induce the formation of a calcium–phosphate layer in vitro, whereas the cartilage layer does not exhibit the ability for calcification.  相似文献   

15.
The crystal morphology, impact strength and nonisothermal crystallization kinetics of poly(trimethylene terephthalate)/maleinized poly(ethylene-octene) (PTT/PEO-MA) copolymer blends were studied by using the polarized optical microscopy, impact tester and differential scanning calorimetry (DSC). Avrami theory modified by Jeziorny, Ozawa and Mo theories were used to study the non-isothermal crystallization kinetics of the blends, respectively. The results suggest that these methods are suitable for analyzing the crystallization kinetics of the PTT/PEO-MA blends. The PEO-MA component, serving as a nucleation agent in blends, can increase the start crystallization temperatures and accelerate the crystallization rate of the blends. The crystal dimensions are predominantly three-dimensional growths, judged from the Avrami exponent n and the Ozawa exponent m, but the spherulites in blends are much smaller than those in pure PTT. The crystallization active energy suggests that the PEO-MA component can make the PTT component easy to crystallize in blends. The blend has the highest Izod impact strength as PEO-MA content is 3wt.%. Considering both the crystallization kinetic analyses results and the crystal morphology of the blends, the modified Avrami method is believed to be the most useful in reflecting the crystallization of the blends.  相似文献   

16.
Abstract

Biodegradable poly(L-lactic acid) (PLLA) microfibers were prepared by electrospinning by varying the applied potential, solution flow rate and collector conditions. PLLA fibers with smoothly oriented and random morphologies were obtained and characterized by scanning electron microscopy. The optimum fiber orientation was obtained at 1000 rpm using a 20.3 cm diameter collecting drum, while for higher and lower drum rotation speeds, the rapid random motion of the jets resulted in a random fiber distribution. The deformation of the jet with rapid solidification during electrospinning often results in a metastable phase. PLLA electrospun fibers are amorphous but contain numerous crystal nuclei that rapidly grow when the sample is heated to 70–140 °C. In this way, the degree of crystallinity of the fibers can be tailored between 0 and 50% by annealing. Infrared transmission spectra revealed that the processing conditions do not affect the PLLA samples at the molecular level and that the crystallinity of the samples is related to the presence of α-crystals.  相似文献   

17.
Biodegradable poly(L-lactic acid) (PLLA) microfibers were prepared by electrospinning by varying the applied potential, solution flow rate and collector conditions. PLLA fibers with smoothly oriented and random morphologies were obtained and characterized by scanning electron microscopy. The optimum fiber orientation was obtained at 1000 rpm using a 20.3 cm diameter collecting drum, while for higher and lower drum rotation speeds, the rapid random motion of the jets resulted in a random fiber distribution. The deformation of the jet with rapid solidification during electrospinning often results in a metastable phase. PLLA electrospun fibers are amorphous but contain numerous crystal nuclei that rapidly grow when the sample is heated to 70–140 °C. In this way, the degree of crystallinity of the fibers can be tailored between 0 and 50% by annealing. Infrared transmission spectra revealed that the processing conditions do not affect the PLLA samples at the molecular level and that the crystallinity of the samples is related to the presence of α-crystals.  相似文献   

18.
The aim of the present study was to evaluate the response of surrounding tissues to newly developed poly(trimethylene carbonate) (PTMC) membranes. Furthermore, the tissue formation beneath and the space maintaining properties of the PTMC membrane were evaluated. Results were compared with a collagen membrane (Geistlich BioGide), which served as control. Single-sided standardized 5.0 mm circular bicortical defects were created in the mandibular angle of rats. Defects were covered with either the PTMC membrane or a collagen membrane. After 2, 4 and 12 weeks rats were sacrificed and histology was performed. The PTMC membranes induced a mild tissue reaction corresponding to a normal foreign body reaction. The PTMC membranes showed minimal cellular capsule formation and showed signs of a surface erosion process. Bone tissue formed beneath the PTMC membranes comparable to that beneath the collagen membranes. The space maintaining properties of the PTMC membranes were superior to those of the collagen membrane. Newly developed PTMC membranes can be used with success as barrier membranes in critical size rat mandibular defects.  相似文献   

19.
A novel poly(l-lactic acid) (PLLA)/tobermorite composite porous membrane for use as filter materials was synthesized by electrospinning a mixture of tobermorite modified by poly(dialyldimethylammoniumchloride) (PDDA) and PLLA. X-ray diffraction patterns of the sample indicated the existence of tobermorite in the sample. Scanning electron micrographs of the sample showed that the nonwoven membrane consists of a few microscopic fibers despite the existence of tobermorite particles. This was due to repulsive force and surface tension. However, no tobermorite particle was exposed at its fiber surface. Thermal analysis showed PLLA of the sample pyrolyzed with two steps of weight loss (44% at around 170 °C and 34% at around 270 °C). Heat treatment of the sample at 130 and 250 °C led to crystallization of a part of amorphous PLLA in the fiber and elimination of the remaining amorphous PLLA, respectively. After the treatment, the membrane maintained its porous structure and was coated with tobermorite particles at the fiber surface.  相似文献   

20.
This paper investigates rheological and mechanical properties of poly(trimethylene terephthalate) (PTT) in presence of multi-walled carbon nanotubes (MWCNTs). Morphological characterization by scanning electron microscope and transmission electron microscope showed uniform distribution of MWCNTs in the PTT matrix. Incorporation of MWCNTs into PTT matrix resulted in higher complex viscosity (η), storage (G′) and loss modulus (G″) than those of neat PTT, especially in low-frequency region. The dramatic increase in melt viscosity of PTT observed upon incorporation of MWCNTs in the range of 0.25–1 wt% could be due to the formation of interconnected network of MWCNTs in the polymer matrix, and thus, this can be regarded as rheological percolation threshold concentration. Cole–Cole plot showed change in slope and also shift in G′ versus G″ plot, which suggested change in microstructure upon MWCNT addition. The reinforcing effect of MWCNTs was also confirmed by dynamic mechanical analysis, where, by adding CNTs, a noticeable increase in storage modulus of PTT was observed. However, addition of MWCNTs showed no significant effect on the tensile properties of PTT due to poor interfacial interaction between CNTs and polymer matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号