首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ti-Al intermetallics have been produced using mechanical alloying technique. A composition of Ti-48Al-2Nb at % powders was mechanically alloyed for various durations of 20, 40, 60, 80 and 100 h. At the early stages of milling, a Ti (Al) solid solution is formed, on further milling the formation of amorphous phase occurs. Traces of TiAl and Ti3Al were formed with major Ti and Al phases after milling at 40 h and beyond. When further milled, phases of intermetallic compounds like TiAl and Ti3Al were formed after 80 hours of milling and they also found in 100 h milled powders. The powders milled for different durations were sintered at 785°C in vacuum. The mechanically alloyed powders as well as the sintered compacts were characterized by XRD, FESEM and DTA to determine the phases, crystallite size, microstructures and the influence of sintering over mechanical alloying.  相似文献   

2.
《Advanced Powder Technology》2014,25(6):1754-1760
In this study, the B4C–TiB2–TiC composite powder was synthesized by mechanical alloying (MA) of Ti–B4C powder mixture. For this purpose, four powder mixtures of Ti and B4C powders with different molar ratios were milled. In order to study the mechanism of Ti–B4C reaction during milling, structural changes and thermal analysis of powder particles were studied by X-ray diffractometry (XRD) and differential thermal analysis (DTA). Morphology and microstructure of powder particles during milling were studied by scanning electron microscopy (SEM). It was found that during MA, after decomposition of the outer layers of B4C particles, first, C reacted with Ti and after that, B was diffused in Ti structure and TiC and TiB2 phases were formed in gradual reaction mode. Also, the results of DTA and thermodynamic analysis confirmed the suggested mechanism for Ti–B4C reaction.  相似文献   

3.
Fabrication of Al-Zn/α-Al2O3 nanocomposite by mechanical alloying   总被引:1,自引:0,他引:1  
In this study fabrication and characterization of alumina particles reinforced aluminum-based metal matrix nanocomposite by mechanical alloying were investigated. Aluminum and zinc oxide powders mixture milled by a planetary ball mill in order to produce Al-13.8 wt.% Zn/5 vol.% Al2O3 nanocomposite. The structural evaluation milled and annealed powders studied by X-ray diffraction, SEM observation and hardness measurement. The aluminum crystallite size estimated with broadening of XRD peaks by Williamson-Hall formula. The results showed that milling of aluminum and zinc oxide for 60 h led to displacement reaction of the zinc oxide and aluminum to produce Zn and Al2O3 phases. The milled powder had a microstructure consisting of nanosized Al2O3 particles in an Al-Zn solid solution with a nanoscale grain size of 40 nm. Microhardness of this nanocomposite was found to be about 190 HV.  相似文献   

4.
Mechanical alloying of Ti, V, Cr, Mo and W with fullerene (C60(C70)) and graphite reveals that fullerene is more reactive than graphite. The formation heat of carbide is the driving force for reaction in the mechanical alloying process. Higher heat of formation results in the direct formation of carbide in Ti-C systems, and the formation of carbide in V-C systems during the subsequent heating of milled powder. In the systemsc with lower carbide heat of formation, a mixture of metal with carbon is obtained by ball milling. No carbide was obtained even after heating the milled powders up to 973 K. Small amount of fullerene remained when milled with Mo and W for 10 hours.  相似文献   

5.
TiAl-based intermetallic matrix composites with dispersed Ti2AlC particles and different amounts of Nb were successfully synthesized by mechanical alloying and hot pressing. The phase evolution of Ti–48 at%. Al elemental powder mixture milled for different times with hexane as a process control agent was investigated. It was found that after milling for 25 h, a Ti(Al) solid solution was formed; also with increase in the milling time to 50 h, an amorphous phase was detected. Formation of a supersaturated Ti(Al) solid solution after 75 h milling was achieved by crystallization of amorphous phase. Addition of Nb to system also exhibited a supersaturated Ti(Al,Nb) solid solution after milling for 75 h, implying that the Al and Nb elements were dissolved in the Ti lattice in a non-equilibrium state. Annealing of 75 h milled powders resulted in the formation of equilibrium TiAl intermetallic with Ti2AlC phases that showed the carbon that originates from hexane, participated in the reaction to form Ti2AlC during heating. Consolidation of milled powder with different amounts of Nb was performed by hot pressing at 1000°C for 1 h. Only the presence of γ-TiAl and Ti2AlC was detected and no secondary phases were observed on the base of Nb. Displacement of γ-TiAl peaks with Nb addition implied that the Nb element was dissolved into TiAl matrix in the form of solid solution, causing the lattice tetragonality of TiAl to increase slightly. The values for density and porosity of samples indicated that condition of hot pressing process with temperature and pressure was adequate to consolidate almost fully densified samples. The isothermal oxidation test was carried out at 1000°C in air to assess the effect of Nb addition on the oxidation behaviour of TiAl/Ti2AlC composites. The oxidation resistance of composites was improved with the increase in the Nb content due to the suppression of TiO2 growth, the formation and stabilization of nitride in the oxide scale and better scale spallation resistance.  相似文献   

6.
In this research a nano-composite structure containing of an intermetallic matrix with dispersed Al2O3 particles was obtained via mechanical activation of TiO2 and Al powder mixture and subsequent sintering. The mixture has been milled for different lengths of time and then as a subsequent process it has been sintered. Phase evolutions in the course of milling and subsequent sintering of the milled powder mixture were investigated. Samples were characterized by XRD, SEM, DTA and TEM techniques.The results reveal that the reaction begins during milling by formation of Al2O3 and L12 Al3Ti and further milling causes partial amorphization of powder mixture. DTA results reveal that milling of the powder mixture causes solid state reaction between Al and TiO2 rather than liquid–solid reaction. Also, it was observed that the exothermicity of aluminothermic reduction is reduced by increasing the milling time and the exothermic peak shifts to lower temperatures after partial amorphization of powder mixture during milling. Phase evolutions of the milled powders after being sintered reveal that by increasing the milling time and formation of L12 Al3Ti in the milled powder, intermediate phase formed at 500 °C changes from D022 Al3Ti to Al24Ti8 phase.  相似文献   

7.
In this work, austenitic oxide dispersion strengthened (AODS) steel of composition Fe–16Cr–16Ni–1.5 W–0.21Ti–0.3Y2O3 (wt. %) was fabricated using two–stage ball milling followed by consolidation through spark plasma sintering (SPS). In the first–stage, mechanical alloying (MA) of ferritic powder and nano sized Y2O3 was carried out. This was followed by the addition of Ni in second–stage milling. SPS of the milled powder was carried out at 900, 950, 1000 and 1050 °C to explore the role of SPS temperature on density, microstructure as well as mechanical properties of the consolidated samples. A relative density of ~ 99% was obtained for samples sintered at 950 and 1000 °C. The as–sintered samples were subsequently solution annealed at 1075 °C for 2 h and water quenched. X–ray diffraction studies confirmed the presence of austenite in the consolidated and solution annealed samples. Electron back scatter diffraction analysis of solution annealed samples sintered at all the temperatures revealed a bimodal microstructure. The average grain size of 1.07 ± 0.72 µm was obtained for solution annealed samples sintered at 1000 °C. Yield strength and elongation of the same was measured as 851 MPa and 18%, respectively at room temperature. These values are the best combination of strength to elongation achieved on AODS alloys processed using MA and SPS, which makes this AODS steel much promising for high temperature applications.  相似文献   

8.
Titanium alloys gain increasing importance in industry due to the expansion of advanced manufacturing technologies such as additive manufacturing. Conventional titanium alloys processed by such technologies suffer from formation of large primary grains and anisotropy of mechanical properties. Therefore, novel alloys are required. Herein, the effect of ternary alloying elements Fe and Cr on the Ti–6.4(wt%)Ni eutectoid system is investigated. Both elements act as eutectoid formers. Fe and Cr show sluggish transformation behavior, whereas Ni is an active eutectoid-forming element. Thereby, sluggish refers to slow and active to fast transformation kinetics. The focus of this work is on the combined addition of such elements studied under different heat-treatment conditions. It is shown in the results that largely varying microstructures can be generated resulting in hardness values ranging from 239 to 556 HV0.1. Moreover, the formation of a substructure within the α phase of direct aged alloys is observed. The formation mechanism of this substructure is investigated in detail. The mechanical properties are discussed based on the microstructural characteristics. The presence of intermetallic Ti2Ni phase increases the Young's modulus, whereas the presence of ω phase results in embrittlement. The results shed light upon the complex phase formation and decomposition behavior of titanium alloys based on Ti–6.4Ni.  相似文献   

9.
The paper reports the synthesis of nanocrystalline NiAl by mechanical alloying of pure metal mixture and a mixture of prealloyed powder with Ni/Al. A large number of compositions have been studied to establish the phase field of NiAl in the milled state. The phase field of NiAl in the ball milled condition was found to be much wider (10–68 at.% Ni) than its equilibrium phase field (45–59 at.% Ni). The metastable equilibrium achieved by mechanical alloying was identical for a given composition irrespective of the starting ingredients. The crystallite size of NiAl reached a minimum (5 nm) at the phase boundary of NiAl/Ni3Al.  相似文献   

10.
Abstract

Oxide dispersion strengthened (ODS) Fe alloys were produced by mechanical alloying (MA) with the aim of developing a nanostructured powder. The milled powders were consolidated by spark plasma sintering (SPS). Two prealloyed high chromium stainless steels (Fe–14Cr–5Al–3W) and (Fe–20Cr–5Al+3W) with additions of Y2O3 and Ti powders are densified to evaluate the influence of the powder composition on mechanical properties. The microstructure was characterised by scanning electron microscope (SEM) and electron backscattering diffraction (EBSD) was used to analyse grain orientation, grain boundary geometries and distribution grain size. Transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) equipped with energy dispersive X-ray spectrometer (EDX) were used to observe the nanostructure of ODS alloys and especially to observe and analyse the nanoprecipitates. Vickers microhardness and tensile tests (in situ and ex situ) have been performed on the ODS alloys developed in this work.  相似文献   

11.
Two quarternary Ti-Al-Si-C powder mixtures, 55Ti-27Al-12Si-6C and 55Ti-36Al-6Si-3C, were mechanically alloyed. The as-alloyed and heated powders have been characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). XRD patterns showed diffuse halos of amorphous like phase for 20-40 h milled powders, but TEM examinations demonstrated that the 40 h milled powders were mainly composed of Ti solid solutions, with some amount of amorphous phase. SEM observations displayed that the lamellar structures of Ti and Al formed at the early stage of milling process subsequently led to the formation of nano- or sub-micrometer particles of homogeneous composition after prolonged milling to 40 h. It is deduced that the solid-stated reaction by inter-diffusion of components should be responsible for phase formation during mechanical alloying. DSC curves of the 40 h milled powders exhibited two sharp exothermal peaks, and the investigation on thermal stability of the 40 h milled powders indicated that Ti5Si3 was first formed at lower temperature, followed by Al2Ti4C2and TiC at intermediate temperature (820°C), and these phases were stable at elevated temperatures. These results raise the possibility of synthesizing TiAl-based composite with titanium silicides and titanium carbides as reinforcements by proper selection of powder compositions.  相似文献   

12.
In this study, the formation and characterisation of Aluminium (Al)-based composites by mechanical alloying and hot extrusion were investigated. Initially, the vanadium trialuminide (Al3V) particles with nanosized structure were successfully produced by mechanical alloying and heat treatment. Al3V–Al2O3 reinforcement was synthesised by mechanochemical reduction during milling of V2O5 and Al powder mixture. In order to produce composite powders, reinforcement powders were added to pure Al powders and milled for 5?h. The composite powders were consolidated in an extrusion process. The results showed that nanostructured Al-10?wt-% Al3V and Al-10?wt-% (Al3V–Al2O3) composites have tensile strengths of 209 and 226?MPa, respectively, at room temperature. In addition, mechanical properties did not drop drastically at temperatures of up to 300°C.  相似文献   

13.
In the present work, in situ TiN/Ti5Si3 nanocomposite powder was prepared by high‐energy mechanical alloying of a Ti and Si3N4 powder mixture via the following route: 9Ti + Si3N4 = Ti5Si3 + 4TiN. Constitution phases and microstructural features of the milled powders at different milling times were studied by XRD, SEM, and TEM. The operative formation mechanisms behind the microstructural developments were disclosed. It showed that the original Si3N4 and Ti constituents demonstrated two different reaction mechanisms during milling, i.e., a progressive mechanism of Si3N4 (≤20 h) and a speedy mechanism of Ti (≤10 h). The morphologies of the milled composite powders experienced a successive change: pre‐refining – coarsening – re‐refining on increasing the applied milling time. The variation of the operative mechanisms was ascribed to the existence/exhaustion of the ductile Ti constituent in the milling system due to the nonoccurrence/initiation of the in situ reaction. The 20 h milled powder was the typical nanocomposites featured by the nanocrystalline Ti5Si3 matrix reinforced with in situ TiN nanoparticles. The grain sizes of the in situ formed Ti5Si3 and TiN phases were generally ≤15 nm, exhibiting coherent interfacial structure between reinforcement and matrix.  相似文献   

14.
Abstract

Powders with nominal composition Fe–14Cr–2W–0·4Ti were mechanically alloyed (MA) with Y2O3 in a planetary ball mill at two different rotational speeds. Consolidation of the as milled powders was performed by spark plasma sintering (SPS). As milled powders showed a highly deformed microstructure with elongated nanometre grains and, depending upon the rotational speed, different stages of the nanocluster evolution were observed to be produced. In the case of consolidated materials, grain growth occurred during the SPS process and it was possible to observe the influence of the MA parameters, with larger and more homogeneously distributed grains at the higher rotational speed. Additionally, Ti was observed to be incorporated to the nanoclusters after SPS, indicating a further step in their evolution during consolidation. The mechanical behaviour of the SPS compacts was evaluated by tensile and small punch testing also showing the influence of the MA parameters in the material behaviour.  相似文献   

15.
The objective of this study is to investigate the effect of alloying element indium on the microstructure, mechanical properties, corrosion behavior and in vitro cytotoxicity of Ti–In binary alloys, with the addition of 1, 5, 10 and 15 at.% indium. The phase constitution was studied by optical microscopic observation and X-ray diffraction measurements. The mechanical properties were characterized by tension and microhardness tests. Potentiodynamic polarization measurements were employed to investigate the corrosion behavior in artificial saliva solutions with and without fluoride. In vitro cytotoxicity was conducted by using L929 and NIH 3T3 mouse fibroblast cell lines, with commercially pure Ti (CP–Ti, ASTM grade 2) as negative control. All of the binary Ti–In alloys investigated in this work were found to have higher strength and microhardness than CP–Ti. Electrochemical results showed that Ti–In alloys exhibited the same order of magnitude of passivation current densities with CP–Ti in artificial saliva solutions. With the presence of NaF, Ti–10In and Ti–15In showed transpassive behavior and lower current densities at high potentials. All experimental Ti–In alloys showed good cytocompatibility, at the same level as CP–Ti. The addition of indium to titanium was effective on increasing the strength and microhardness, without impairing its good corrosion resistance and cytocompatibility.  相似文献   

16.
《Composites Part A》1999,30(4):583-586
A new fabrication technology is presented for long fibre-reinforced ceramic matrix composites (CMCs) using pre-impregnated (prepreg) sheets. The monolayer prepreg sheets were fabricated by a modified doctor blade method using a Si–Ti–C–O long fibre/Al2O3 laminated composite as an example. These were flexible enough to allow handling during subsequent processing steps. At the final step of fabrication, the multilayer-preforms of fibre containing prepreg sheets were pressureless-sintered in the furnace. The key point of this fabrication method is that the SiO2–B2O3-based glass powder is previously mixed with Al2O3 powder to be dispersed in the slurry, in order to lower the sintering temperature and thus to avoid the degradation of fibres during sintering of the fibre contained green body. Continuous fibre CMC fabrication using such a technique has the advantage of not requiring expensive fabrication facilities (and is thus cost-effective) in addition to its potential for significantly increasing/tailoring mechanical properties such as static strength, fracture toughness, and fatigue resistance.  相似文献   

17.
The effect of initial powder blend composition on the synthesis and formation mechanism of nickel silicide phases was investigated by mechanical alloying in Ni-60 and Ni-66.7?at.% Si powder blends. It was noted that the equilibrium NiSi phase started to form in the early stages of milling and that the amount of the NiSi phase in the milled powder increased with increasing milling time. Even though, under equilibrium conditions, a mixture of both the NiSi and NiSi2 phases was expected to be present in the Ni-60?at.% Si composition and the stoichiometric NiSi2 phase in the Ni-66.7?at.% Si composition, the NiSi phase was present in both the compositions investigated. However, while only the NiSi phase was present homogeneously in the Ni-60?at.% Si powder blend, both the NiSi phase and a very small amount of unreacted Si were present in the powder blend of Ni-66.7?at.% Si composition. This unexpected phase constitution in the milled powders was attributed to a partial loss of Si during mechanical alloying of the powder blends, confirmed by energy dispersive X-ray spectrometer analyses, and explained on a thermodynamic basis.  相似文献   

18.
High-energy milling is considered to be one of the most efficient techniques for producing materials that have a well-controlled chemical composition and microstructural features that are difficult to obtain using other synthesis routes. In this study, the mechanical alloying technique (MA) was used to develop special powder metallurgy (PM) steels with two different types of properties. The use of this technique is essential for obtaining the target microstructure, which ensures the desired performance of the resulting material. Oxide dispersion strengthened (ODS) ferritic steels were produced using MA based on the prealloyed grade Fe–20Cr–5Al and Fe–14Cr–5Al–3 W steels with the addition of Ti and Y2O3 as reinforcements. The incorporation of Y2O3 enables a homogeneous dispersion of nano-oxides and nano-clusters in a submicron-grained structure that should enhance the mechanical properties up to 600 °C. In addition, the base alloying system, Fe–Cr–Al (Ti), should enable the development of protective oxide layers through high-temperature treatments, which improves the compatibility with the environment, avoids liquid–metal embrittlement and contributes to the increase of the mechanical response up to 600 °C. Furthermore, microalloyed powders can be obtained using MA and consolidated with a pressure-assisted sintering process in an attempt to control the final grain size, to achieve microalloyed steels, and to achieve an extraordinary balance of properties.  相似文献   

19.
The development of a proper processing method for the fabrication TiB2‐based wettable cathodes for aluminum electrolysis has been challenging for more than half a century. In this work, TiB2‐based ceramics were consolidated via pressureless sintering using Ti, Fe, and Ti–Fe additives. The microstructure, physical and mechanical properties as well as the interaction and the stability of the material in liquid aluminum were investigated. It was shown that specimens sintered with a Ti–Fe additive have excellent stability in liquid aluminum as the solid TiB2 skeleton maintained its integrity and strength after 5 days of exposure in liquid aluminum at 960 °C. Transmission electron microscopy analysis revealed that the formation of inter‐particle bridges of pure TiB2 is responsible for the good resistance of the material in molten aluminum. A sintering mechanism was proposed for the consolidation of TiB2 with a Ti–Fe additive. TiB2‐based ceramic sintered with a Ti–Fe alloy is suggested as a potentially reliable material for application as wettable cathode for aluminum electrolysis.  相似文献   

20.
In this study, the amorphous phase formation in Al80Fe10M10 (M = Ti, V, Ni) (at.%) ternary systems during mechanical alloying has been investigated. The milled samples were characterized using X-ray diffraction and differential thermal analyses. A thermodynamic analysis of the amorphous phase formation was performed for these systems using the Miedema model. The obtained results demonstrate that amorphous phases can be formed during the mechanical alloying process of the Al80Fe10M10 (M = Ti, V, Ni) ternary systems. The produced amorphous alloys exhibit one-stage crystallization during heating, which is amorphous to the Al13Fe4 intermetallic phases. The thermal stability of the produced amorphous phases decreases in the order of Al80Fe10Ti10 > Al80Fe10Ni10 > Al80Fe10V10.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号