首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 556 毫秒
1.
A facility for detailed simulation of maintenance processes in the ITER Hot Cell Facility (HCF) has been taken into operation. The facility mimics the Remote Handling (RH) work-cells as are presently foreseen. Novel virtual reality (VR) technology, extended with a physics engine is used to create a realistic setting in which a team of Remote Handling (RH) operators can interact with a virtual Hot Cell environment. The physics engine is used to emulate the Hot Cell behavior and to provide tactile feed-back of the (virtual) slave. Multi-operator maintenance scenarios can be developed and tested in virtual reality. Complex interactions between the RH operators and the HCF control system software will be tested. Task performance will be quantified and operational resource consumption will be estimated.  相似文献   

2.
The ITER remote handling (RH) system has been divided into 7 major equipment system procurements that deliver complete systems (operator interfaces, equipment controllers, and equipment) according to task oriented functional specifications. Each equipment system itself is an assembly of transporters, power manipulators, telemanipulators, vehicular systems, cameras, and tooling with a need for controllers and operator interfaces.From an operational perspective, the ITER RH systems are bound together by common control rooms, operations team, and maintenance team; and will need to achieve, to a varying degree, synchronization of operations, co-operation on tasks, hand-over of components, and sharing of data and resources. The separately procured RH systems must, therefore, be integrated to form a unified RH system for operation from the RH control rooms.The RH system will contain a heterogeneous mix of specially developed RH systems and off-the-shelf RH equipment and parts. The ITER Organization approach is to define a control system architecture that supports interoperable heterogeneous modules, and to specify a standard set of modules for each system to implement within this architecture. Compatibility with standard parts for selected modules is required to limit the complexity for operations and maintenance. A key requirement for integrating the control system modules is interoperability, and no module should have dependencies on the implementation details of other modules.The RH system is one of the ITER Plant systems that are integrated and coordinated through the hierarchical structure of the ITER CODAC system. It is distinguished from other Plant systems by the man-in-the-loop nature of RH operations and the need for control rooms at a level below the main control room. The RH control system architecture has been designed to also support the central monitoring and coordination of the RH activities.  相似文献   

3.
4.
The ITER remote handling (RH) maintenance system is a key component in ITER operation both for scheduled maintenance and for unexpected situations. It is a complex collection and integration of numerous systems, each one at its turn being the integration of diverse technologies into a coherent, space constrained, nuclearised design. This paper presents an integrated view and recent results related to the Blanket RH System, the Divertor RH System, the Transfer Cask System (TCS), the In-Vessel Viewing System, the Neutral Beam Cell RH System, the Hot Cell RH and the Multi-Purpose Deployment System.  相似文献   

5.
In ITER, maintenance operations will be largely performed by remote handling (RH). Before ITER can be put into operation, safety regulations and licensing authorities require proof of maintainability for critical components. Part of the proof will come from using standard components and procedures. Additional verification and validation is based on simulation and hardware tests in 1:1 scale mockups.The Master Slave manipulator system (MS2) Benchmark Product was designed to implement a reference set of maintenance tasks representative for ITER remote handling. Experiments were performed with two versions of the Benchmark Product. In both experiments, the quality of visual feedback varied by exchanging direct view with indirect view (using video cameras) in order to measure and analyze its impact on human task performance.The first experiment showed that both experienced and novice RH operators perform a simple task significantly better with direct visual feedback than with camera feedback. A more complex task showed a large variation in results and could not be completed by many novice operators. Experienced operators commented on both the mechanical design and visual feedback. In a second experiment, a more elaborate task was tested on an improved Benchmark product. Again, the task was performed significantly faster with direct visual feedback than with camera feedback. In post-test interviews, operators indicated that they regarded the lack of 3D perception as the primary factor hindering their performance.  相似文献   

6.
To investigate the structural integrity of the ITER vacuum vessel (VV) and ports, the structural analyses of the regular equatorial and the lower remote handling (RH) ports have been performed. The advanced design of the equatorial regular port adopting a pure friction type flange has been recommended as a reference design by the ITER International Organization. The structural integrity of the equatorial port flange, sealing unit, and connecting duct has been reviewed by conducting nonlinear finite element analyses. The advanced design of the regular equatorial port flange with proper pretension is acceptable in the structural design point of view.From the local analyses for a connecting duct and a sealing unit, it has been found that the stresses are less than the allowable values.The structural analyses of the lower RH port have been also performed to verify the capability for supporting the VV. Since high local stress occurs at the gusset and supporting block, the case study for the lower port has been conducted to mitigate the stress concentration and to modify the component design. The strength of the lower RH port structures can be improved by the design modification of poloidal and toroidal gusset.  相似文献   

7.
The advantages of Product Lifecycle Management (PLM) systems are widely understood among the industry and hence a PLM system is already in use by International Thermonuclear Experimental Reactor (ITER) Organization (IO). However, with the increasing involvement of software in the development, the role of Software Configuration Management (SCM) systems have become equally important. The SCM systems can be useful to meet the higher demands on Safety Engineering (SE), Quality Assurance (QA), Validation and Verification (V&V) and Requirements Management (RM) of the developed software tools. In an experimental environment, such as ITER, the new remote handling requirements emerge frequently. This means the development of new tools or the modification of existing tools and the development of new remote handling procedures or the modification of existing remote handling procedures. PLM and SCM systems together can be of great advantage in the development and maintenance of such remote handling system. In this paper, we discuss how PLM and SCM systems can be integrated together and play their role during the development and maintenance of ITER remote handling system. We discuss the possibility to investigate such setup at DTP2 (Divertor Test Platform 2), which is the full scale mock-up facility to verify the ITER divertor remote handling and maintenance concepts.  相似文献   

8.
《Fusion Engineering and Design》2014,89(7-8):1009-1013
The ITER diagnostics generic upper port plug (GUPP) is developed as a standardized design for all diagnostic upper port plugs, in which a variety of payloads can be mounted. Here, the remote handling compatibility analysis (RHCA) of the GUPP design is presented that was performed for the GUPP final design review. The analysis focuses mainly on the insertion and extraction procedure of the diagnostic shield module (DSM), a removable cassette that contains the diagnostic in-vessel components. It is foreseen that the DSM is a replaceable component – the procedure of which is to be performed inside the ITER hot cell facility (HCF), where the GUPP can be oriented in a vertical position.The DSM removal procedure in the HCF consists of removing locking pins, an M30 sized shoulder bolt and two electrical straps through the use of a dexterous manipulator, after which the DSM is lifted out of the GUPP by an overhead crane. For optimum access to its internals, the DSM is mounted in a handling device. The insertion of a new or refurbished DSM follows the reverse procedure.The RHCA shows that the GUPP design requires a moderate amount of changes to become fully compatible with RH maintenance requirements.  相似文献   

9.
The challenge of developing the conceptual design of the ECH Upper Launcher system for MHD control in the ITER plasmas has been tackled by team of European Associations together with the European Domestic Agency (“F4E”). The launcher system has to meet the following requirements: (a) a mm-wave system extending from the interface to the transmission line up to the target absorption zone in the plasma and performing as an intelligent antenna; (b) a structural system integrating the mm-wave system and ensuring sufficient thermal and nuclear shielding; (c) port plug remote handling and testing capability ensuring high port plug system availability. The paper describes the reference launcher design. The mm-wave system is composed of waveguide and quasi-optical sections with a front steering system. An automated feedback control system is developed as a concept based on an assimilation procedure between predicted and diagnosed absorption location. The structural system consists of the blanket shield module, the port plug frame, and the internal shield for appropriate neutron shielding towards the launcher back-end. The specific advantages of a double walled structure are discussed with respect to adequate baking, to rigidity towards launcher deflection under plasma-generated loads and to removal of thermal loads, including nuclear ones. Basic studies of remote handling (RH) to validate design development are initiated using a virtual reality simulation backed by experimental validation, for which a launcher handling test facility (LHT) is set up as a full scale experimental site allowing furthermore thermohydraulic studies with ITER blanket water parameters.  相似文献   

10.
This paper is part of the remote handling (RH) activities for the future fusion reactor ITER. The aim of the R&D program performed under the European Fusion Development Agreement (EFDA) work program is to demonstrate the feasibility of close inspection tasks such as viewing or leak testing of the Divertor cassettes and the Vacuum Vessel (VV) first wall of ITER.It is assumed that a long reach, limited payload carrier penetrates the ITER chamber through the openings evenly distributed around the machine such as In-Vessel Viewing System (IVVS) access or through upper port plugs.To perform an intervention a short time after plasma shut down, the operation of the robot should be realised under ITER conditioning i.e. under high vacuum and temperature conditions (120 °C).The feasibility analysis drove the design of the so-called articulated inspection arm (AIA) which is a 8.2 m long robot made of five modules with a 11 actuated joints kinematics. A single module prototype was designed in detail and manufactured to be tested under ITER realistic conditions at CEA-Cadarache test facility.As well as demonstrating the potential for the application of an AIA type device in ITER, this program is also dedicated to explore the necessary robotic technologies required to ITER's IVVS deployment system.This paper presents the whole AIA robot concept, the first results of the test campaign on the prototype vacuum and temperature demonstrator module.  相似文献   

11.
12.
《Fusion Engineering and Design》2014,89(9-10):2278-2282
The remote maintenance of the ITER divertor is largely dependent on the usage of haptically teleoperated manipulators and man-in-the-loop operations. These maintenance operations are very demanding for the manipulator operators, yet vital for the success of the whole ITER experiment. Haptic shared control of the maintenance manipulators offers a promising solution for assisting the teleoperators in the maintenance tasks. A shared control system assists the operator by generating artificial guiding force effects and overlaying them on top of the haptic feedback from the teleoperation environment.An experimental haptic shared control system, called the Computer Assisted Teleoperation (CAT) has been developed at the Divertor Test Platform 2 (DTP2). In this paper, we investigate the design of the system and how the system integrates with the ITER compliant DTP2 prototype Remote Handling Control System (RHCS). We also experimentally assess the effect of the guidance to the operator performance in an ITER-relevant maintenance scenario using the Water Hydraulic MANipulator (WHMAN), which is specially designed for the divertor maintenance. The result of the experiment gives suggestive indication that the CAT system improves the performance of the operators of the system.  相似文献   

13.
The USITER, through the Princeton Plasma Physics Lab (PPPL), is responsible for the delivery of several fully integrated upper, equatorial and lower port plugs dedicated for the diagnostics in ITER. Each port plug package consists of a generic port plug structure and a set of diagnostics and diagnostic housings. The shielding design of the integrated port plugs calls for maintaining a dose level not to exceed 100 μSv/h inside the interspace of each port; the room behind the port plug where maintenance personnel access the rear of the port. This is set as an upper target design in order to perform routine maintenance 1E6 sec (~two weeks) following shutdown. Expensive remote handling robots and tooling are required otherwise. In this paper we present results from a parametric study aimed at providing initial assessment of the attainable dose rates in the diagnostics ports and their extension areas in order to properly address the duration time and frequency for the workers to perform the scheduled maintenance. The nuclear analysis is performed using both the serial version and the distributed memory parallel (DMP) version of the ATTILA-7.1.0, 3-D FEM Discrete Ordinates code, along with the FENDL2.1/FORNAX and ANSI/ANS-6.1.1-1977 data bases.  相似文献   

14.
The Joint European Torus (JET) Remote Handling System has evolved from a small scale maintenance capability to one of high efficiency large volume installations. The Enhanced Performance 2 shutdown 2010–2011 for example, required the replacement of many thousands of components ranging from about 100 g to 130 kg in weight. The scale of this type of operation and the necessity to maximise operational availability intensified the demands for high productivity whilst maintaining the necessary high standards for precision, reliability, cleanliness, and operational security.This paper discusses the developments in design, control, maintenance, preparation and operation of the current state of the art remote handling facilities at JET. It explores how the experience of over 20,000 h of operations has developed the applied methodology and how this could be appropriate to ITER and other facilities requiring complex remote maintenance, where extensive, high productivity remote handling operations will be essential. It also discusses the advances that have been made in management and presentation of operational data within the command, control and human machine interfaces (HMI) systems, along with the supporting operational databases.  相似文献   

15.
This paper is based on the remote maintenance system project (WPRM) for the demonstration fusion power reactor (DEMO). Following ITER, DEMO aims to confirm the capability of generating several hundred of MW of net electricity by 2050. The main objective of these activities is to develop an efficient and reliable remote handling (RH) system for replacing the divertor cassettes.This paper presents the preliminary results of the concept design of the divertor RH system. The proposed divertor mover is a hydraulic telescopic boom driven from the transportation cask through the maintenance tunnel of the reactor. The boom is divided in three sections of 4 m each, and it is driving an end-effector in order to perform the scheduled operations of maintenance inside the vacuum vessel.Two alternative design of the end effector to grip and manipulate the divertor cassette are also presented in this work. Both the concepts are hydraulically actuated, basing on the ITER previous studies. The divertor cassette end-effector consists of a lifting arm linked to the divertor mover, a tilting plate, a cantilever arm and a hook-plate.The main objective of this paper is to illustrate the feasibility of DEMO divertor remote maintenance operations.  相似文献   

16.
The need to maximise the operational availability of fusion devices has driven the enhancements in accuracy, flexibility and speed associated with the inspection techniques used at JET. To this end, the remote installation of the ITER-Like Wall (ILW) tiles, conduits and embedded diagnostics has necessitated the adoption of technologies from other industries for their use in conjunction with the JET Remote Handling (RH) system. The novel adaptation of targetless stereophotogrammetry, targeted single-camera photogrammetry and gap measurement techniques for remote applications has prompted a range of challenges and lessons learnt both from the design process and operational experience.Interfacing Commercial Off-The-Shelf (COTS) components with the existing RH equipment has highlighted several issues of relevance to the developing ITER RH system. This paper reports results from the stereophotogrammetry and the single-camera photogrammetry surveys, allowing analysis of the effectiveness of the RH system as a platform for in-vessel measurement. This includes scrutiny of the accuracy achieved with each technique as well as the impact on the in-vessel Configuration Management Model (CMM). The paper concludes with a summary of key recommendations for the ITER RH system based on the experience of remote metrology at JET.  相似文献   

17.
Already in the early phase of a design for ITER, the maintenance aspects should be taken into account, since they might have serious implications. This paper presents the arguments in support of the case for the maintainability of the design, notably if this maintenance is to be performed by advanced remote methods. This structure is compliant to the evolving maintenance strategy of ITER. Initial results of a Failure Mode Effects and Criticality Analysis (FMECA) and a development risk analysis for the ITER upper port plug #3, housing the Charge Exchange Recombination Spectroscopy (CXRS) diagnostic, are employed for the definition of the maintenance strategy.The CXRS upper port plug is essentially an optical system which transfers visible light from the plasma into a fiber bundle. The most critical component in this path is the first mirror (M1) whose reflectivity degrades during operation due to deposition and/or erosion dominated effects. Amongst other measures to mitigate these effects, the strategy is to allow for a replacement of this mirror. Therefore it is mounted on a retractable central tube. The main purpose of this tube is to make frequent replacements possible without hindering operation. The maintenance method in terms of time, geometry and spare part policy has a large impact on cost of the system and time usage in the hot cell.Replacement of the tube under vacuum and magnetic field seems infeasible due to the operational risk involved. The preferred solution is to have a spare tube available which is replaced in parallel with other maintenance operations on the vessel, as to avoid any interference in the hot cell with the shutdown scheduling. This avoids having to refurbish a full port plug and also allows for a more frequent replacement of M1, as we can replace the mirror anytime the vacuum vessel is vented, estimated to be once a year.  相似文献   

18.
In the field of the ITER port plug engineering and integration task, CEA has contributed to define proposals concerning the port plugs vacuum sealing interface with the vessel flange and the equatorial plug handling.The 2001 baseline vacuum flange sealing consisted of TIG welding of a 316L strip plate on to U shapes. This arrangement presented some issues like welding access, implementation of tools, lip consumption, complex local leak test, continuous leak checking. Therefore, an alternate sealing solution based on the use of metallic gaskets is proposed. The different technical aspects are discussed to explain how this design can simplify the maintenance and deal with safety and vacuum requirements.The design of the mechanical attachment and vacuum sealing of the plug has constantly evolved, but the associated remote handling equipment was not systematically reviewed. An update of the cask and maintenance procedure was studied in order to design it in accordance with the last generic plug flange design. This includes a concept of a gripping system that uses the plug flange bolting area and, to help the remote handling process, a cantilever assisting system is suggested to increase the reliability of the transfer operation between vacuum vessel and cask.  相似文献   

19.
The In Vessel Viewing System (IVVS) is fundamental remote handling equipment, which will be used to make a survey of the status of the blanket first wall and divertor plasma facing components. A prototype of a laser In Vessel Viewing and ranging System was developed and tested at ENEA laboratories in Frascati under EFDA task agreements, it is able to perform sub-millimetric bi-dimensional and three-dimensional images inside ITER during maintenance procedure allowing the evaluation of the state and damages of the in-vessel surface. The present prototype has been designed to operate under room conditions and starting from springtime 2009 a Grant with F4E is in progress for the design and the assessment of the IVVS system for ITER, keeping in account all the environmental conditions and constraints.  相似文献   

20.
The ITER blanket (BL) is composed of about 400 modules in the vacuum vessel (VV). The BL has to be maintained by remote handling means due to high radiation levels in the VV after D-T operation. The remote handling (RH) equipment for BL maintenance consists of articulated rail, supports, a rail-mounted vehicle, a telescopic arm, an end-effecter, tools and related systems such as transfer casks and umbilical system.Towards the construction, the BL RH equipment design has been improved and developed in more detail, based on the 2001 FDR design. The overview of design results is introduced in this paper. The design of rail deployment system of the BL RH has been updated to enable the rail connection in the transfer cask in order to minimize occupation space at storage area. For this purpose, design work has been performed for concept, sequence and typical simulation of BL replacement in the VV and rail deployment/storage of the RH equipment in the cask, including cask docking. In particular, the technical issues of the rail connection in the cask are (1) tight tolerance of a pin at a hinge, (2) limited space for the connection inside a cask and (3) tight positioning accuracy. This paper summarizes the idea to solve these issues and the results of the design work. The paper also introduces new cable handling equipment, rail support equipment and BL module transporter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号