首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Direct electrochemistry of horseradish peroxidase (HRP) was realized in a dextran (De), 1-ethyl-3-methylimidazolium ethylsulphate ([EMIM]EtOSO3) and V2O5 nanobelt composite material modified carbon ionic liquid electrode (CILE). Spectroscopic results indicated that HRP retained its native structure in the composite. A pair of well-defined redox peaks of HRP appeared in pH 3.0 phosphate buffer solution with the formal potential of ?0.213 V (vs. SCE), which was the characteristic of HRP heme Fe(III)/Fe(II) redox couple. The result was attributed to the specific characteristics of De–IL–V2O5 nanocomposite and CILE, which promoted the direct electron transfer rate of HRP with electrode. The electrochemical parameters of HRP on the composite modified electrode were calculated and the electrocatalysis of HRP to the reduction of trichloroacetic acid (TCA) was examined. Under the optimal conditions the reduction peak current increased with TCA concentration in the range from 0.4 to 16.0 mmol L?1. The proposed electrode is valuable for the third-generation electrochemical biosensor.  相似文献   

2.
Electrostatic shielding zones made of electrode graphite powder were used as a new type of ionic and electronic current sinks. Because of the local elimination of the applied electric field, voltage and current within the zones, ions are led inside them and accumulate there. The current sinks were implemented in electrostatic shielding electrodialysis of a simulated nickel plating rinse water containing 100 mg L?1 nickel and electrodeionization of a 0.001 M NiSO4 solution with simultaneous electrochemical regeneration of the ion exchange resin beds. Pure water was obtained with a Ni2+ ion concentration of less than 0.1 mg L?1 at a flow rate of 2.02 × 10?4 dm3 s?1 diluate stream and a current density of 30 A m?2.  相似文献   

3.
The electrochemical behaviors of acetaminophen (ACOP) on a graphene–chitosan (GR–CS) nanocomposite modified glassy carbon electrode (GCE) were investigated by cyclic voltammetry (CV), chronocoulometry (CC) and differential pulse voltammetry (DPV). Electrochemical characterization showed that the GR–CS nanocomposite had excellent electrocatalytic activity and surface area effect. As compared with bare GCE, the redox signal of ACOP on GR–CS/GCE was greatly enhanced. The values of electron transfer rate constant (ks), diffusion coefficient (D) and the surface adsorption amount (Γ?) of ACOP on GR–CS/GCE were determined to be 0.25 s? 1, 3.61 × 10? 5 cm2 s? 1 and 1.09 × 10? 9 mol cm? 2, respectively. Additionally, a 2e?/2H+ electrochemical reaction mechanism of ACOP was deduced based on the acidity experiment. Under the optimized conditions, the ACOP could be quantified in the range from 1.0 × 10? 6 to 1.0 × 10? 4 M with a low detection limit of 3.0 × 10? 7 M based on 3S/N. The interference and recovery experiments further showed that the proposed method is acceptable for the determination of ACOP in real pharmaceutical preparations.  相似文献   

4.
A stable and uniform organic–inorganic nanocomposite that consists of graphene (GR) and pyrenebutyric acid (PBA) was obtained by ultrasonication, which was characterized by scanning electron microscopy (SEM) and UV–vis absorption spectra. The dispersion was dropped onto a gold electrode surface to obtain GR–PBA modified electrode (GR–PBA/Au). Electrochemical behaviors of the modified electrode were characterized by cyclic voltammetry and electrochemical impedance spectroscopy using [Fe(CN)6]3 ?/4 ? as the electroactive probe. A novel DNA biosensor was constructed based on the covalent coupling of amino modified oligonucleotides with the carboxylic group on PBA. By using methylene blue (MB) as a redox-active hybridization indicator, the biosensor was applied to electrochemically detect the complementary sequence, and the results suggested that the peak currents of MB showed a good linear relationship with the logarithm values of target DNA concentrations in the range from 1.0 × 10? 15 to 5.0 × 10? 12 M with a detection limit of 3.8 × 10? 16 M. The selectivity experiment also showed that the biosensor can well distinguish the target DNA from the non-complementary sequences.  相似文献   

5.
A novel nonenzymatic sensor for H2O2 was developed based on an Ag@TiO2 nanocomposite synthesized using a simple and cost effective approach with an electrochemically active biofilm. The optical, structural, morphological and electrochemical properties of the as-prepared Ag@TiO2 nanocomposite were examined by UV–vis spectroscopy, X-ray diffraction, transmission electron microscopy and cyclic voltammetry (CV). The Ag@TiO2 nanocomposite was fabricated on a glassy carbon electrode (GCE) and their electrochemical performance was analyzed by CV, differential pulse voltammetry and electrochemical impedance spectroscopy. The Ag@TiO2 nanocomposite modified GCE (Ag@TiO2/GCE) displayed excellent performance towards H2O2 sensing at ? 0.73 V in the linear response range from 0.83 μM to 43.3 μM, within a detection limit and sensitivity of 0.83 μM and ~ 65.2328 ± 0.01 μAμM? 1 cm? 2, respectively. In addition, Ag@TiO2/GCE exhibited good operational reproducibility and long term stability.  相似文献   

6.
In the present paper, the use of a nanostructured electrochemical sensor was described for simultaneous determination of phenylhydrazine (PhH) and hydrazine (HZ). This electrochemical sensor was prepared by a simple and rapid method by modification of carbon paste electrode with a derivative of hydroquinone and TiO2 nanoparticles. The modified electrode showed an excellent character for electrocatalytic oxidation of PhH. Using differential pulse voltammetry, a highly selective and simultaneous determination of PhH and HZ has been explored at the modified electrode. Differential pulse voltammetry peak currents of PhH and HZ increased linearly with their concentration at the ranges of 2.0 × 10? 6 to 1.0 × 10? 3 M and 7.5 × 10? 5–1.0 × 10? 3 M, respectively and the detection limits for PhH and HZ were 7.5 × 10? 7 M and 9.0 × 10? 6 M, respectively.  相似文献   

7.
In this paper a new electrochemical method was proposed for the determination of adenosine-5′-triphosphate (ATP) based on a chitosan (CTS) and graphene (GR) composite film modified carbon ionic liquid electrode (CTS–GR/CILE). CILE was fabricated by using ionic liquid 1-butyl-3-methylimidazolium dihydrogen phosphate ([BMIM]H2PO4) as the binder, which was further modified by GR and CTS composite. The modified electrode exhibited an excellent electrocatalytic activity toward the oxidation of ATP with the increase of the oxidation peak current and the decrease of the oxidation peak potential. The electrochemical parameters of ATP on CTS–GR/CILE were calculated with the electron transfer coefficient (α) as 0.329, the electron transfer number (n) as 2.15, the apparent heterogeneous electron transfer rate constant (ks) as 3.705 × 10? 5 s? 1 and the surface coverage (ΓT) as 9.33 × 10? 10 mol cm? 2. Under the optimal conditions the oxidation peak current was proportional to ATP concentration in the range from 1.0 × 10? 6 to 1.0 × 10? 3 M with the detection limit of 0.311 μM (S/N = 3). The proposed electrode showed excellent reproducibility, stability, anti-interference ability and further successfully applied to the ATP injection sample detection.  相似文献   

8.
We herein report a simple, low cost and green preparation of nanowires of (anthraquinone-2-carboxylic acid/amino functionalized) multiwalled carbon nanotubes (HOOC-2-AQ/AMWCNTs) which has been further employed for the development of highly sensitive oxygen sensor. The prepared composite has been characterized by TEM and electrochemical studies. The glassy carbon electrode modified with composite shows an irreversible and good electrocatalytic activity for the reduction of oxygen. The reduction potential of the oxygen was shifted 460 mV towards the positive potential with this modified electrode as compared to bare glassy carbon electrode. The prepared material was stable with no leaching observed of the mediator. A linear response range of 0.2–6.8 mg L?1, with a sensitivity of 5.0 μA L mg?1 and a detection limit of 0.02 mg L?1 were obtained with this sensor.  相似文献   

9.
Determination of uric acid in human serum and urine is useful to provide treatment guidelines to hyperuricemic patients. An electrochemical sensor was developed for selective and quantitative recognition of uric acid by using a preanodised sol-gel coated graphite electrode with a molecularly imprinted polymer brush of poly(melamine–co-chloranil) grafted to its exterior surface. During a preconcentration step at (+ 2.0 V versus saturated calomel electrode), the encapsulated analyte recapture involved hydrophobically induced hydrogen-bondings in outwardly exposed MIP cavities in aqueous environment (pH 7.0), instantly oxidised as dications, and then cathodically stripped off as corresponding lactam responding differential pulse, cathodic stripping voltammetric signal. The uric acid was selectively detected without any cross reactivity in the windows of 14.56–177.42 µg mL? 1 (aqueous medium), 4.78–106.96 µg mL? 1 (blood serum), and 7.81–148.42 µg mL? 1 (urine) indicating detection limits in the range of 3.71–4.10 µg mL? 1 (3σ, RSD = 1.9%).  相似文献   

10.
A biocompatible electrochemical sensor for selective detection of epinephrine (EP) in the presence of 1000-fold excess of ascorbic acid (AA) and uric acid (UA) was fabricated by modifying the carbon paste electrode (CPE) with multi-walled carbon nanotubes (MWCNTs) using a casting method. The electro-catalytic activity of the modified electrode for the oxidation of EP was investigated. The current sensitivity of EP was enhanced to about five times upon modification. A very minimum amount of modifier was used for modification. The voltammetric response of EP was well resolved from the responses of AA and UA. The electrochemical impedance spectroscopic (EIS) studies reveal the least charge transfer resistance for the modified electrode. The AA peak that is completely resolved from that of EP at higher concentrations of AA and the inability of the sensor to give an electrochemical response for AA below a concentration of 3.0 × 10? 4 M makes it a unique electrochemical sensor for the detection of EP which is 100% free from the interference of AA. Two linear dynamic ranges of 1.0 × 10? 4–1.0 × 10? 5 and 1.0 × 10? 5–5.0 × 10? 7 M with a detection limit of 2.9 × 10? 8 M were observed for EP at modified electrode. The practical utility of this modified electrode was demonstrated by detecting EP in spiked human blood serum and EP injection. The modified electrode is highly reproducible and stable with anti fouling effects.  相似文献   

11.
An electrochemical DNA biosensor was proposed as a screening device for the rapid analysis of folic acid using a pencil graphite electrode modified with salmon sperm ds-DNA. At first, immobilization of the ds-DNA on pencil graphite electrode was optimized using response surface methodology. Solution pH, DNA concentration, time of DNA deposition and potential of deposition was optimized each at three levels. The optimum combinations for the reaction were pH 4.8, DNA concentration of 24 μg mL? 1, deposition time of 304 s, and deposition potential of 0.60 V, by which the adenine signal was recorded as 3.04 μA. Secondly the binding of folic acid to DNA immobilized on a pencil graphite electrode was measured through the variation of the electrochemical signal of adenine. Folic acid could be measure in the range of 0.1–10.0 μmol L? 1 with a detection limit of 1.06 × 10? 8 μmol L? 1. The relative standard deviations for ten replicate differential pulse voltammetric measurements of 2.0 and 5.0 μmol L? 1 folic acid were 4.6% and 4.3%, respectively. The biosensor was successfully used to measure folic acid in different real samples.  相似文献   

12.
In this paper, nichrome was adopted as a substrate, to fabricate the pre-anodized inlaying ultrathin carbon paste electrode (PAIUCPE). The electrochemical behaviors of dopamine (DA) and epinephrine (EP) at the electrode were investigated by cyclic voltammetry (CV). The reaction mechanisms of DA and EP have also been put forward. It was found that the electrode showed an excellent electrochemical behavior for electrode reaction of DA and EP. The cathodic potential difference of DA and EP was about 370 mV and the simultaneous determination of DA and EP was achieved based on it. The reduction peak current was proportional to the DA and EP concentrations in the range of 8.0 × 10? 7–3.0 × 10? 4 M and 2.0 × 10? 6–1.5 × 10? 4 M with the detection limits of 1.70 × 10? 7 M and 3.27 × 10? 7 M, respectively. Because the oxidation of ascorbic acid (AA) is an irreversible reaction at the PAIUCPE, the interferences of AA for determining DA and EP were eliminated. The method has been successfully applied to the determination of DA and EP in hydrochloride injection with satisfactory results.  相似文献   

13.
Amperometric biosensor based on horseradish peroxidase immobilized via glutaraldehyde on the polyaniline modified platinum electrode shows evidenced promising characteristics in detecting anticancer drug tamoxifen. The sensor was fabricated simply by adsorbing horseradish peroxidase enzyme on the electrode surface for which Cyclic Voltammetry was used to monitor the electro-catalytic reduction of tamoxifen under diffusion-adsorption controlled conditions. Fourier Transform Infrared Spectroscopy, Cyclic Voltammetry and Electrochemical Impedance Spectroscopic techniques are used to characterize the electrochemical interfacial properties of surface modified electrodes. The first-hand effort on modified biosensor within Platinum/Polyaniline/Horseradish peroxidase biosensor system has demonstrated excellent electro-analytical properties with biosensor sensitivity of 1.6 μA ng mL? 1. The optimum limit of detection and limit of quantification are 0.07 ng mL? 1 and 0.29 ng mL? 1 respectively for the determination of anticancer drug tamoxifen. It is felt that the present study will help in improving our knowledge of cost-effective quantitative determination of tamoxifen in metabolized biological fluids and other pharmaceutical formulations.  相似文献   

14.
The preparation and electrochemical characterization of a carbon paste electrode modified with the N,N-ethylene-bis(salicyllideneiminato)oxovanadium (IV) complex ([VO(salen)]) as well as its application for ranitidine determination are described. The electrochemical behavior of the modified electrode for the electroreduction of ranitidine was investigated using cyclic voltammetry, and analytical curves were obtained for ranitidine using linear sweep voltammetry (LSV) under optimized conditions. The best voltammetric response was obtained for an electrode composition of 20% (m/m) [VO(salen)] in the paste, 0.10 mol L? 1 of KCl solution (pH 5.5 adjusted with HCl) as supporting electrolyte and scan rate of 25 mV s? 1. A sensitive linear voltammetric response for ranitidine was obtained in the concentration range from 9.9 × 10? 5 to 1.0 × 10? 3 mol L? 1, with a detection limit of 6.6 × 10? 5 mol L? 1 using linear sweep voltammetry. These results demonstrated the viability of this modified electrode as a sensor for determination, quality control and routine analysis of ranitidine in pharmaceutical formulations.  相似文献   

15.
Bio-nanocomposite films based on chitosan and manganese oxide nanoflake have been fabricated via the layer-by-layer (LBL) self-assembly technique. UV–vis absorption spectra showed that the subsequent growth of the nanocomposite film was regular and highly reproducible from layer to layer. X-ray photoelectron spectroscopy (XPS) spectra confirmed the incorporation of chitosan and manganese oxide nanoflake into the films. Scanning electron microscopy (SEM) images revealed that the nanocomposite film had a continuous surface and a layered structure. A sensitive hydrogen peroxide (H2O2) amperometric sensor was fabricated with the chitosan–manganese oxide nanoflake nanocompoite film. The sensor showed a rapid and linear response to H2O2 over the range from 2.5 × 10? 6 to 1.05 × 10? 3 M, with a sensitivity of 0.038 A M? 1 cm? 2.  相似文献   

16.
Folic acid (FA) is a water soluble vitamin that exists in many natural species. The lack of FA causes some deficiencies in human body, so finding a simple and sensitive method for determining the FA is important. A new chemically modified electrode was fabricated for determination of FA in human blood plasma using gold nanoparticles (AuNPs) and carbon paste electrode (CPE). Gold nanoparticles–modified carbon paste electrode (AuNPs/CPE) was characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The experimental parameters such as pH, scan rate (ν) and amount of modifier were studied by cyclic voltammetry and the optimized values were chosen. The electrochemical parameters such as diffusion coefficient of FA (DFA), electrode surface area (A) and electron transfer coefficient (α) were calculated. Square wave voltammetry as an accurate technique was used for quantitative calculations. A good linear relation was observed between anodic peak current (ipa) and FA concentration (CFA) in the range of 6 × 10? 8 to 8 × 10? 5 mol L? 1, and the detection limit (LOD) achieved 2.7 × 10? 8 mol L? 1, that is comparable with recently studies. This paper demonstrated a novel, simple, selective and rapid sensor for determining the FA in the biological samples.  相似文献   

17.
A highly sensitive electrochemical sensor for the detection of trichloroacetic acid (TCA) is developed by subsequent immobilization of phthalocyanine (Pc) and Fe(II) onto multiwalled carbon nanotubes (MWCNTs) modified glassy carbon (GC) electrode. The GC/MWCNTs/Pc/Fe(II) electrode showed a pair of well-defined and nearly reversible redox couple correspondent to (Fe(III)Pc/Fe(II)Pc) with surface-confined characteristics. The surface coverage (Γ) and heterogeneous electron transfer rate constant (ks) of immobilized Fe(II)–Pc were calculated as 1.26 × 10? 10 mol cm? 2 and 28.13 s? 1, respectively. Excellent electrocatalytic activity of the proposed GC/MWCNTs/Pc/Fe(II) system toward TCA reduction has been indicated and the three consequent irreversible peaks for electroreduction of CCl3COOH to CH3COOH have been clearly seen. The observed chronoamperometric currents are linearly increased with the concentration of TCA at concentration range up to 20 mM. Detection limit and sensitivity of the modified electrode were 2.0 μM and 0.10 μA μM? 1 cm? 2, respectively. The applicability of the sensor for TCA detection in real samples was tested. The obtained results suggest that the proposed system can serve as a promising electrochemical platform for TCA detection.  相似文献   

18.
A sensor based on gold nanoparticle/single-walled carbon nanotube film on the surface of glassy carbon electrode is prepared. Electrochemical behavior of adrenaline hydrochloride (AH) on the surface of gold nanoparticle/single-walled carbon nanotube modified glassy carbon electrode is investigated. A simple, sensitive, and inexpensive method for determination of AH is proposed. The oxidation peak currents is proportional to adrenaline hydrochloride concentrations in the range of 0.20 mg L? 1 to 1.80 mg L? 1 in 0.1 M phosphate buffer solution of pH 7.3, the detection limit for AH is 0.06 mg L? 1, and the recoveries are in the range from 100.0 to 110.0% with RSD of 1.2–1.9% (n = 6).  相似文献   

19.
In this paper, a highly selective poly (vinyl chloride) (PVC) membrane electrode based on (1, 9-dibenzyl-1, 3, 7, 9, 11, 15-hexaaza cyclohexa decane) copper(II) perchlorate; [Cu((benzyl)2[16]aneN6)](ClO4)2; as a synthesized ionophore, for perchlorate-selective electrode is reported. The influence of membrane composition, pH and possible interfering anions were investigated on the response properties of the electrode. The sensor responds to perchlorate ion in linear range from 1.0 × 10? 6 to 1.0 × 10? 1 M with a slope ? 59.4 ± 0.3 mV per decade. The limit of detection of the electrode was 4.0 × 10? 7 M ClO4. Selectivity coefficients indicate a good discriminating ability towards ClO4 ion in comparison to other anions. The proposed sensor has a fast response time of about 7 s and can be used for at least 2 months without any considerable divergence in potential. Due to importance of analysis of perchlorate in water samples, this selective electrode was applied as potentiometric sensor in determination of perchlorate ion in real samples.  相似文献   

20.
A new sensitive voltammetric sensor for determination of sulfadiazine is described. The developed sensor is based on carbon paste electrode modified with sulfadiazine imprinted polymer (MIP) as a recognition element. For comparison, a non-imprinted polymer (NIP) modified carbon paste electrode was prepared. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods were performed to study the binding event and electrochemical behavior of sulfadiazine at the modified carbon paste electrodes. The determination of sulfadiazine after its extraction onto the electrode surface was carried out by DPV at 0.92 V vs. Ag/AgCl owing to oxidation of sulfadiazine. Under the optimized operational conditions, the peak current obtained at the MIP modified carbon paste electrode was proportional to the sulfadiazine concentration within the range of 2.0 × 10? 7–1.0 × 10? 4 mol L? 1 with a detection limit and sensitivity of 1.4 × 10? 7 mol L? 1 and 4.2 × 105 μA L mol? 1, respectively. The reproducibility of the developed sensor in terms of relative standard deviation was 2.6%. The sensor was successfully applied for determination of sulfadiazine in spiked cow milk and human serum samples with recovery values in the range of 96.7–100.9%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号