首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Laser-induced breakdown spectroscopy (LIBS) is discussed as a possible method to characterize the composition, tritium retention and amount of material deposits on the first wall of fusion devices. The principle of the technique is the ablation of the co-deposited layer by a laser pulse with P (power density)  0.5 GW/cm2 and the spectroscopic analysis of the light emitted by the laser induced plasma. The typical spatial extension of the laser plasma plume is in the order of 1 cm with typical plasma parameters of ne  3 × 1022 m?3 and Te  1–2 eV averaged over the plasma lifetime which is below 1 μs. In this study “ITER-Like” mixed deposits with a thickness of about 2 μm and consisting of a mixture of W/Al/C and D on bulk tungsten substrates have been analyzed by LIBS to measure the composition and hydrogen isotopes content at different laser energies, ranging from about 2 J/cm2 (0.3 GW/cm2) to about 17 J/cm2 (2.4 GW/cm2) for 7 ns laser pulses. It is found that the laser energies above about 7 J/cm2 (1 GW/cm2) are needed to achieve the full removal of the deposit layer and identify a clear interface between the deposit and the bulk tungsten substrate by applying 15–20 laser pulses while hydrogen isotopes decrease strongly after the first laser pulse. Under these conditions, the evolution of the spectral line intensities of W/Al/C/hydrogen can be used to evaluate the layer composition.  相似文献   

2.
In order to investigate the overall atomic hydrogen background and the dynamic characteristics of wall pumping/fuelling phenomenon, a permeation probe system has been developed and applied in the spherical tokamak QUEST. Reliability of measurements, within ±3% accuracy and a positive correlation with the hydrogen line emission over three orders of magnitude have been demonstrated for more than 3000 various plasma discharges. By comparison of the experimental permeation (flux) curves with the numerically simulated curves, the net incident atomic hydrogen flux is evaluated in the range of 1 × 1019 H m?2 s?1 to 4 × 1020 H m?2 s?1. The atomic flux has been investigated as a function of various plasma operation parameters like RF power, gas pressure and magnetic configuration. Using the static particle balance and permeation measurements, the progress in wall conditioning has been investigated. An inverse correlation between the atomic hydrogen flux and improvement in wall pumping has been observed over the two campaigns.  相似文献   

3.
Deuterium and hydrogen ions with an energy of 15 keV have been implanted in virgin MgO (1 0 0) single crystals and in single crystals containing helium implantation generated microcavities. Doses were varied from 2 × 1015 to 2 × 1016 cm−2. The samples were annealed from room temperature to 950 K. The defects produced by hydrogen and the trapping of hydrogen at the defects were monitored by photon absorption and positron beam analysis. With this novel technique a depth distribution of defects can be determined for implantation depths from 0 to 2000 nm. The technique is very sensitive for vacancy and vacancy clusters, i.e. sites with low electron density. After 950 K annealing microcavities were observed for the 2 × 1016 cm−2 dose but not for the 10 times lower dose. During annealing up to 750 K point defects are mobile but the defect clusters remain small and filled with hydrogen. In samples which contain already microcavities, point defects and deuterium from the deuterium irradiation are accumulated by the microcavities.  相似文献   

4.
The RF based single driver ?ve ion source experiment test bed ROBIN (Replica Of BATMAN like source in INDIA) has been set up at Institute for Plasma Research (IPR), India in a technical collaboration with IPP, Garching, Germany. A hydrogen plasma of density 5 × 1012 cm?3 is expected in driver region of ROBIN by launching 100 kW RF power into the driver by 1 MHz RF generator. The cesiated source is expected to deliver a hydrogen negative ion beam of 10 A at 35 kV with a current density of 35 mA/cm2 as observed in BATMAN.In first phase operation of the ROBIN ion source, a hydrogen plasma has been successfully generated (without extraction system) by coupling 80 kW RF input power through a matching network with high power factor (cos θ > 0.8) and different plasma parameters have been measured using Langmuir probes and emission spectroscopy. The plasma density of 2.5 × 1011 cm?3 has been measured in the extraction region of ROBIN. For negative hydrogen ion beam extraction in second phase operation, extraction system has been assembled and installed with ion source on the vacuum vessel. The source shall be first operated in volume mode for negative ion beam extraction. The commissioning of the source with high voltage power supply has been initiated.  相似文献   

5.
We have investigated two new modes of operation been in T-10 limiter tokamak experiments with a novel rotary feeder of lithium dust. Quasi steady-state mode I and pulse mode II of dust delivery were realized in both OH and OH + ECRH disruption free plasmas at the lithium flow rate up to 2 × 1021 atoms/s. A higher flow rate in mode II with injection rate of ~5 × 1021 atoms/s caused a series of minor disruptions, which was completed by discharge termination after the major disruption. The observed decreases of bolometer and Dβ signals, with increase of the electron density during the lithium dust injection, reveal the effects of the first wall conditioning. The lithium technology may provide inherent safety pathway for major disruption mitigation in a tokamak reactor, which requires demonstration in contemporary tokamak experiments.  相似文献   

6.
Polyimide (PI), polyetheretherketone (PEEK) and polyethyleneterephthalate (PET) were implanted with 40 keV Ni+ ions at room temperature at fluences ranging from 1.0 × 1016 to 1.5 × 1017 ions cm?2 and with ion current density varying between 4 and 10 μA cm?2. The depth profiles of the implanted Ni atoms determined by the RBS technique were compared with those predicted by the SRIM and TRIDYN codes. Hydrogen depletion as a function of the ion fluence was determined by the ERDA technique, and the compositional and structural changes of the polymers were characterised by the UV–vis and XPS methods. The implanted profiles differed significantly from those predicted by the SRIM code while the lower fluences were satisfactorily described by the TRIDYN simulation. A significant hydrogen release from the polymer surface layer was observed along with significant changes in the surface layer composition. The UV–vis results indicated an increase in the concentration and conjugation of double bonds.  相似文献   

7.
A study of the effects of ion irradiation of organically modified silicate thin films on the loss of hydrogen and increase in hardness is presented. NaOH catalyzed SiNawOxCyHz thin films were synthesized by sol–gel processing from tetraethylorthosilicate (TEOS) and methyltriethoxysilane (MTES) precursors and spin-coated onto Si substrates. After drying at 300 °C, the films were irradiated with 125 keV H+ or 250 keV N2+ at fluences ranging from 1 × 1014 to 2.5 × 1016 ions/cm2. Elastic Recoil Detection (ERD) was used to investigate resulting hydrogen concentration as a function of ion fluence and irradiating species. Nanoindentation was used to measure the hardness of the irradiated films. FT-IR spectroscopy was also used to examine resulting changes in chemical bonding. The resulting hydrogen loss and increase in hardness are compared to similarly processed acid catalyzed silicate thin films.  相似文献   

8.
A two-dimensional numerical model has been developed simulating the process of laser based surface etching of Thoria targets via pulsed laser ablation enabling their surface preparation for subsequent metallographic investigation. The heat conduction equation solved by an explicit finite difference method provides simulated data on the temperature distribution at the surface and within the target, melt depth and evaporation rate from the target as a function of time, during and after the laser pulse. Calculations have been performed for laser and target parameters corresponding to experimental conditions matching our reported experimental observations on pulsed laser etching of Thoria pellets via laser ablation. The calculated maximum surface temperature reached by the laser treated Thoria target exceeds the estimated value of thermodynamic critical temperature of Thoria. Thus, our results on simulation of pulsed laser ablation for an average laser flux of 10 J/cm2 delivered by a 10 ns Nd:YAG laser pulse corresponding to a peak laser intensity of 3.87 × 109 W/cm2 suggest, that explosive boiling could probably be an additional material-removal mechanism other than normal boiling and evaporation when surface etching Thoria with such intense laser radiation. Since explosive boiling is usually accompanied by intense material ejection, this mechanism of material-removal should be avoided to ensure minimum induced target damage associated with the technique of laser based etching. Our calculations thus help us to make a proper choice of laser parameters facilitating subsequent metallographic investigation of laser etched Thoria fuel pellets, at the same time, minimizing unwanted associated thermal effects such as target damage through crater formation, as has been experimentally observed.  相似文献   

9.
Pellet injection is the primary fueling technique planned for core fueling of ITER burning plasmas. Also, the injection of relatively small pellets to purposely trigger rapid small edge localized modes (ELMs) has been proposed as a possible solution to the heat flux damage from larger natural ELMs likely to be an issue on the ITER divertor surfaces. The ITER pellet injection system is designed to inject pellets into the plasma through both inner and outer wall guide tubes. The inner wall guide tubes will provide high throughput pellet fueling while the outer wall guide tubes will be used primarily to trigger ELMs at a high frequency (>15 Hz). The pellet fueling rate of each injector is to be up to 120 Pa m3/s, which will require the formation of solid D–T at a volumetric rate of ~1500 mm3/s. Two injectors are to be provided for ITER at the startup with a provision for up to six injectors during the D–T phase. The required throughput of each injector is greater than that of any injector built to date, and a novel twin-screw continuous extrusion system is being developed to meet the challenging design parameters. Status of the development activities is presented, highlighting recent progress.  相似文献   

10.
《Fusion Engineering and Design》2014,89(7-8):1294-1298
Understanding surface properties of Er2O3, especially in relation to adsorption and permeation of atomic hydrogen, is of considerable importance to the study of tritium permeation barriers. In this work, hydrogen diffusion pathways through the low-index (1 0 0), (1 1 0), and (1 1 1) surfaces of cubic Er2O3 have been calculated using density functional theory within the GGA (PBE) + U approach. The dependence of the effective U parameter on lattice constants, bulk moduli, and formation energies of Er2O3 has been investigated in detail. The energetics of hydrogen penetration from the surfaces to the solution site in bulk Er2O3 were defined using the optimum effective U value of 5.5 eV. For a low surface coverage of hydrogen (0.89 × 1014 H/cm2), a penetration energy of at least 1.7 eV was found for all the low-index erbium oxide surfaces considered. The results of the present study will provide useful guidance for future studies on modeling defects, such as grain boundaries and vacancies, in tritium permeation barriers.  相似文献   

11.
《Journal of Nuclear Materials》2006,348(1-2):122-132
The release of Wigner energy from the graphite of the inner thermal column of the ASTRA research reactor has been studied by differential scanning calorimetry and simultaneous differential scanning calorimetry/synchrotron powder X-ray diffraction between 25 °C and 725 °C at a heating rate of 10 °C min−1. The graphite, having been subject to a fast-neutron fluence from ∼1017 to ∼1020 n cm−2 over the life time of the reactor at temperatures not exceeding 100 °C, exhibits Wigner energies ranging from 25 to 572 J g−1 and a Wigner energy accumulation rate of ∼7 × 10−17 J g−1/n cm−2. The shape of the rate-of-heat-release curves, e.g., maximum at ca. 200 °C and a fine structure at higher temperatures, varies with sample position within the inner thermal column, i.e., the distance from the reactor core. Crystal structure of samples closest to the reactor core (fast-neutron fluence >1.5−5.0 × 1019 n cm−2) is destroyed while that of samples farther from the reactor core (fast-neutron fluence <1.5−5.0 × 1019 n cm−2) is intact, with marked swelling along the c-axis. The dependence of the c lattice parameter on temperature between 25 °C and 200 °C as determined by Rietveld refinement for the non-amorphous samples leads to the expected microscopic thermal expansion coefficient along the c-axis of ∼ 26 × 10−6 °C−1. However, at 200 °C, coinciding with the maximum in the rate-of-heat-release curves, the rate of thermal expansion abruptly decreases indicating a crystal lattice relaxation. The 14C activity in the inner thermal column graphite ranges from 6 to 467 kBq g−1. The graphite of the inner thermal column of the ASTRA research reactor has been treated by heating to 400 °C for 24 h in a hot-cell facility prior to interim storage.  相似文献   

12.
Ion implantation induced defects and their consequent electrical impact have been investigated. Unintentionally doped n-type gallium nitride was implanted with 100 keV Si+ and 300 keV Ar+ ions in a fluence range of 1014–1015 ions/cm2. The samples were characterized with Rutherford backscattering/Channeling method for damage buildup. Time of flight elastic recoil detection analysis was implied on the Si implanted samples to see the ion depth distribution. Ar implanted GaN samples were studied electrically with scanning spreading resistance microscopy. Our results show that an Ar fluence of 5 × 1014 cm?2 increases the resistance by five orders of magnitude to a maximum value. For the highest fluence, 6 × 1015 cm?2, the resistivity decreases by two orders of magnitude.  相似文献   

13.
The influence of proton irradiation on current–voltage characteristics, Nd  Na values and parameters of deep centres in 6H–SiC pn structures grown by sublimation epitaxy has been studied. The irradiation was carried out with 8 MeV protons in the range of doses from 1014 to 1016 cm−2. Irradiation with a dose of 3.6 × 1014 cm−2 leaves the voltage drop at high forward currents (10 A/cm2) practically unchanged. For higher irradiation dose of 1.8 × 1015 cm−2, the forward voltage drop and the degree of compensation in the samples increased ; partial annealing of the radiation defects and partial recovery of the electrical parameters occurred after annealing at T∼400–800 K. Irradiation with a dose of 5.4 × 1015 cm−2 resulted in very high resistance in forward biased pn structures which remained high even after heating to 500°C. It is suggested that proton irradiation causes decreasing of the lifetime and formation of an i- or an additional p-layer.  相似文献   

14.
Tungsten deposits were produced by sputtering method using hydrogen isotope RF plasma, and the density and the incorporated components in the deposits were investigated. The density changed in the range from 14.2 g/cm3 to 6.1 g/cm3, and hydrogen isotope retention changed in the range from 0.25 to 0.05 as (H + D)/W by the difference of deposition conditions. Both the density and hydrogen isotope retention tended to decrease with an increase of pressure. Even though a deuterium gas was used for producing tungsten deposits, not only deuterium but also hydrogen, oxygen and water vapor were incorporated in the deposits. It is considered that the incorporation of these components originated in water vapor unintentionally existing in the vacuum chamber.  相似文献   

15.
Fluorescent soft X-ray carbon Kα emission spectra (XES) have been used to characterize the bonding of carbon atoms in polyimide (PI) and polycarbosilane (PCS) films. The PI films have been irradiated with 40 keV nitrogen or argon ions, at fluences ranging from 1 × 1014 to 1 × 1016 cm−2. The PCS films have been irradiated with 5 × 1015 carbon ions cm−2 of 500 keV and/or annealed at 1000°C. We find that the fine structure of the carbon XES of the PI films changes with implanted ion fluence above 1 × 1014 cm−2 which we believe is due to the degradation of the PI into amorphous C:N:O. The width of the forbidden band as determined from the high-energy cut-off of the C Kα X-ray excitation decreases with the ion fluence. The bonding configuration of free carbon precipitates embedded in amorphous SiC which are formed in PCS after irradiation with C ions or combined treatments (irradiation and subsequent annealing) is close to either to that in diamond-like films or in silicidated graphite, respectively.  相似文献   

16.
Electrical properties of Si-implanted n-type GaN/AlGaN/GaN layers and contact resistances of ohmic electrodes (TiAl) formed on these layers have been examined. Experimental results have clearly shown that ohmic electrodes with a low specific-contact resistance of 1.4 × 10?7 Ω cm2 can be fabricated on the n-type layer having a low sheet resistance of 145 Ω/sq, which has been formed by the dual-energy Si ion implantation (80 keV:1.01 × 1015/cm2 + 30 keV:1.6 × 1014/cm2) and subsequent annealing at 1200 °C for 2 min using a Si3N4 layer as an encapsulant.  相似文献   

17.
Erbium-doped lithium niobate (Er:LiNbO3) is a prospective photonics component, operating at 1.5 μm, which could find its use chiefly as an optical amplifier or waveguide laser. In this study, we have focused on the properties of the optically active Er:LiNbO3 layers, which are fabricated by medium energy ion implantation under various experimental conditions. Erbium ions were implanted at energies of 330 and 500 keV with fluences of 1.0 × 1015, 2.5 × 1015 and 1.0 × 1016 cm?2 into LiNbO3 single-crystalline cuts of various orientations. The as-implanted samples were annealed in air at 350 °C for 5 h. The depth distribution and diffusion profiles of the implanted Er were measured by Rutherford Backscattering Spectroscopy (RBS) using 2 MeV He+ ions. The projected range RP and projected range straggling ΔRP were calculated employing the SRIM code. The damage distribution and structural changes were described using the RBS/channelling method. Changes of the lithium concentration depth distribution were studied by Neutron Depth Profiling (NDP). The photoluminescence spectra of the samples were measured to determine whether the emission was in the desired region of 1.5 μm. The obtained data made it possible to reveal the relations between the structural changes of erbium-implanted lithium niobate and its luminescence properties important for photonics applications.  相似文献   

18.
In the design of new slant tube for large sample irradiation in the Ghana Research Reactor-1 facility, Monte Carlo N-Particle Code version 5 (MCNP-5) was employed to simulate the neutron flux profile of the new design. The results show that the neutron flux peaks at different points, at an average thermal neutron flux of (1.1406 ± 0.0046) × 1011, (1.1849 ± 0.0047) × 1011 and (1.0580 ± 0.0044) × 1011 n cm?2 s?1 around the reactor vessel. The first two peaks happened to coincide with pneumatic transfer pipes in the pool, but the third peak happened to be in line with the slant tube position. It was observed that as the diameter of the tube varies from 3.90 cm to 23.40 cm, the average thermal neutron flux decreased exponentially from (1.1849 ± 0.0047)1011 n cm?2 s?1 to (3.3241 ± 0.0100) × 1010 n cm?2 s?1. The average thermal neutron flux decreases exponentially along the diameter of the designed slant tube from (1.0366 ± 0.0042) × 1011 n cm?2 s?1 to (9.7396 ± 0.0136) × 109 n cm?2 s?1. From the results, it is evident that a slant tube of diameter 15.00 cm can be installed at the original slant tube position for large sample irradiation.  相似文献   

19.
Coolant water in blankets and divertor cassettes will be activated by neutrons during ITER operation. 16N and 17N are determined to be the most important activation products in the coolant water in terms of their impact on ITER design and performance. In this study, the geometry of cooling channels in blanket module 4 was described precisely in the ITER neutronics model ‘Alite-4’ based on the latest CAD model converted using MCAM developed by FDS Team. The 16N and 17N concentration distribution in the blanket, divertor cassette and their primary heat transport systems were calculated by MCNP with data library FENDL2.1. The activation of cooling pipes induced 17N decay neutrons was analyzed and compared with that induced by fusion neutrons, using FISPACT-2007 with data library EAF-2007. The outlet concentration of blanket and divertor cooling systems was 1.37 × 1010 nuclide/cm3 and 1.05 × 1010 nuclide/cm3 of 16N, 8.93 × 106 nuclide/cm3 and 0.33 × 105 nuclide/cm3 of 17N. The decay gamma-rays from 16N in activated water could be a problem for cryogenic equipments inside the cryostat. Near the cryostat, the activation of pipes from 17N decay neutrons was much lower than that from fusion neutrons.  相似文献   

20.
A study of the effects of Ar ion implantation on the structural transformation of single crystal Si investigated by confocal Raman spectroscopy is presented. Implantation was performed at 77 K using 150 keV Ar++ with fluences ranging from 2 × 1013 to 1 × 1015 ions/cm2. The Raman spectra showed a progression from crystalline to highly disordered structure with increasing fluence. The 520 cm?1 c-Si peak was seen to decrease in intensity, broaden and exhibit spectral shifts indicating an increase in lattice disorder and changes in the residual stress state. In addition, an amorphous Si band first appeared as a shoulder on the 520 cm?1 peak and then shifted to lower wavenumbers as a single broadband peak with a spectral center of 465 cm?1. Additionally, the emergence of the a-Si TA phonon band and the decrease of the c-Si 2TA and 2TO phonon bands also indicated the same structural transition from crystalline to highly disordered. The Raman results were compared to those obtained by channeling RBS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号