首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polycrystalline samples of Ca3−xNaxCo2−xMnxO6 (x=0.0–0.5) have been prepared by the sol-gel cum combustion method using sucrose in order to investigate the effects of the coupled substitution of Na and Mn on Ca and Co sites on the transport properties of Ca3Co2O6(Co326). The products were characterized by Fourier transform infrared spectroscopy, powder x-ray diffraction (XRD), thermogravimetry (TGA), differential thermal analysis and scanning electron microscopy. XRD patterns reveal the formation of single-phase products up to x=0.5. Coupled substitution increases the solubility of both Na and Mn on Ca and Co sites, respectively, in contrast to the limited solubility of Na and Mn (x=0.2) when separately substituted. TGA confirms the formation of the Ca3Co2O6 phase at temperatures ∼720 °C. The grain size of the parent and substituted products is in the range 150–250 nm. Electrical resistivity and Seebeck coefficient were measured in the temperature range 300–800 K. Resistivity shows semiconducting behavior for all the compositions, particularly in the low-temperature regime. The Seebeck coefficient increases with temperature throughout the measured temperature range for all compositions. The maximum Seebeck coefficient (200 μV K−1) is observed for x=0.5 at 825 K, and this composition may be optimal for high-temperature thermoelectric applications.  相似文献   

2.
The Hodgkin and Huxley (HH) model predicts sustained repetitive firing of nerve action potentials for a suprathreshold depolarizing current pulse for as long as the pulse is applied (type 2 excitability). Squid giant axons, the preparation for which the model was intended, fire only once at the beginning of the pulse (type 3 behaviour). This discrepancy between the theory and experiments can be removed by modifying a single parameter in the HH equations for the K+ current as determined from the analysis in this paper. K+ currents in general have been described by IK=gK(VEK), where gK is the membrane''s K+ current conductance and EK is the K+ Nernst potential. However, IK has a nonlinear dependence on (VEK) well described by the Goldman–Hodgkin–Katz equation that determines the voltage dependence of gK. This experimental finding is the basis for the modification in the HH equations describing type 3 behaviour. Our analysis may have broad significance given the use of IK=gK(VEK) to describe K+ currents in a wide variety of biological preparations.  相似文献   

3.
A parallel band at 2,200 cm−1 and a perpendicular band at 2,780 cm−1 of CH3D have been observed under high resolution and analysed. The analysis of the perpendicular band revealed the presence of l-type doubling in the doubly degenerate excited state. From the analysis of the parallel band it is found that B0= 3.880 cm−1. A hybrid band of CD3H has been observed near 2,600 cm−1. Both active components, A and E are observed and analysed. The ground state B0 value found from this analysis is in good agreement with previous determinations.  相似文献   

4.
We are developing an experiment to measure the correlations a, A, and B, and the Fierz interference term b in neutron decay, with a precision of approximately 10−4. The experiment uses an electromagnetic spectrometer in combination with two large-area segmented silicon detectors to detect the proton and electron from the decay in coincidence, with 4π acceptance for both particles. For the neutron-polarization-dependent observables A and B, precision neutron polarimetry is achieved through the combination of a pulsed neutron beam, under construction at the SNS, and a polarized 3He neutron polarizer. Measuring a and A in the same apparatus provides a redundant determination of λ = gA/gV. Uncertainty in λ dominates the uncertainty of CKM unitarity tests.  相似文献   

5.
In this study, the determination of noxious heavy metals, cadmium (Cd), bismuth (Bi), mercury (Hg), titanium (Ti), lead (Pb) and metalloid arsenic (As) in skin‐whitening cosmetics were examined using microwave digestion and inductively coupled plasma atomic emission spectrometry method. A complete digestion of cosmetics samples was achieved using a mixture of hydrofluoric acid/hydrogen peroxide/nitric acid. The quantification of the target compounds was done by standard addition method. The excellent quality parameters for instance, detection limits, As (4.6 ppb), Bi (7.9 ppb), Cd (0.45 ppb), Hg (3.3 ppb), Pb (3.8 ppb), Ti (4.3 ppb), linearity (r 2  > 0.999) and run‐to‐run and day‐to‐day precisions with relative standard deviations <3% were obtained. The recovery rates for standard reference materials were found between 90 and 105%. The average concentration of heavy metals in cosmetics samples were in the range of 1.0–12.3 (μg g−1, As), 33–7097 (μg g−1, Bi), 0.20–0.6 (μg g−1, Cd), 0.70–2700 (μg g−1, Hg), 1.20–143 (μg g−1, Pb) and 2.0–1650 (μg g−1, Ti).Inspec keywords: cosmetics, atomic emission spectroscopyOther keywords: skin‐whitening cosmetics, microwave digestion, plasma atomic emission spectrometry, noxious heavy metals, cadmium, bismuth, mercury, titanium, lead, metalloid arsenic, hydrofluoric acid, hydrogen peroxide, nitric acid, standard addition method, standard reference materials  相似文献   

6.
Aminophenyl boronic acids can form reversible covalent ester interactions with cis-diol-containing molecules, serving as a selective tool for binding glycoproteins as antibody molecules that possess oligosaccharides in both the Fv and Fc regions. In this study, amino phenyl boronic acid (APBA) magnetic particles (MPs) were applied for the magnetic separation of antibody molecules. Iron oxide MPs were firstly coated with dextran to avoid non-specific binding and then with 3-glycidyloxypropyl trimethoxysilane to allow further covalent coupling of APBA (APBA_MP). When contacted with pure protein solutions of human IgG (hIgG) and bovine serum albumin (BSA), APBA_MP bound 170 ± 10 mg hIgG g−1 MP and eluted 160 ± 5 mg hIgG g−1 MP, while binding only 15 ± 5 mg BSA g−1 MP. The affinity constant for the interaction between hIgG and APBA_MP was estimated as 4.9 × 105 M−1 (Ka) with a theoretical maximum capacity of 492 mg hIgG adsorbed g−1 MP (Qmax), whereas control particles bound a negligible amount of hIgG and presented an estimated theoretical maximum capacity of 3.1 mg hIgG adsorbed g−1 MP (Qmax). APBA_MPs were also tested for antibody purification directly from CHO cell supernatants. The particles were able to bind 98% of IgG loaded and to recover 95% of pure IgG (purity greater than 98%) at extremely mild conditions.  相似文献   

7.
FucoPol, a fucose-containing extracellular polysaccharide (EPS) produced by bacterium Enterobacter A47 using glycerol as the carbon source, was employed as a coating material for magnetic particles (MPs), which were subsequently functionalized with an artificial ligand for the capture of antibodies. The performance of the modified MPs (MP–EPS-22/8) for antibody purification was investigated using direct magnetic separation alone or combined with an aqueous two-phase system (ATPS) composed of polyethylene glycol (PEG) and dextran. In direct magnetic capturing, and using pure protein solutions of human immunoglobulin G (hIgG) and bovine serum albumin (BSA), MP–EPS-22/8 bound 120 mg hIgG g−1 MPs, whereas with BSA only 10 ± 2 mg BSA g−1 MPs was achieved. The hybrid process combining both the ATPS and magnetic capturing leads to a good performance for partitioning of hIgG in the desired phase as well as recovery by the magnetic separator. The MPs were able to bind 145 mg of hIgG g−1 of particles which is quite high when compared with direct magnetic separation. The theoretical maximum capacity was calculated to be 410 ± 15 mg hIgG adsorbed g−1 MPs with a binding affinity constant of 4.3 × 104 M−1. In multiple extraction steps, the MPs bound 92% of loaded hIgG with a final purity level of 98.5%. The MPs could easily be regenerated, recycled and re-used for five cycles with only minor loss of capacity. FucoPol coating allowed both electrostatic and hydrophobic interactions with the antibody contributing to enhance the specificity for the targeted products.  相似文献   

8.
Natural products have been widely used in the treatment of type 2 diabetes (T2D). However, their mechanisms are often obscured due to multi‐components and multi‐targets. The authors constructed a pathway‐based protein–protein association (PPA) network for target proteins of 13 α‐glucosidase inhibitors (AGIs) identified from Scutellaria baicalensis Georgi (SBG), designed to explore the underlying mechanisms. This network contained 118 nodes and 1167 connections. An uneven degree distribution and small‐world property were observed, characterised by high clustering coefficient and short average path length. The PPA network had an inherent hierarchy as C(k)∼k −0.71. It also exhibited potential weak disassortative mixing pattern, coupled with a decreased function Knn (k) and negative value of assortativity coefficient. These properties indicated that a few nodes were crucial to the network. PGH2, GNAS, MAPK1, MAPK3, PRKCA, and MAOA were then identified as key targets with the highest degree values and centrality indices. Additionally, a core subnetwork showed that chrysin, 5,8,2′‐trihydroxy‐7‐methoxyflavone, and wogonin were the main active constituents of these AGIs, and that the serotonergic synapse pathway was the critical pathway for SBG against T2D. The application of a pathway‐based protein–protein association network provides a novel strategy to explore the mechanisms of natural products on complex diseases.  相似文献   

9.
Two infrared absorption bands of CH2D2 have been analyzed in the semirigid rotor approximation. These are the A-type band at 2671.67 cm−1 and the C-type band at 4425.61 cm−1. The A-type band has previously been assigned as v3+v9, and the C-type band is tentatively assigned as v3+v6 The upper state of the A-type band is perturbed presumably by the close lying level 2v5. This interaction has not been investigated. The following values were found for the rotational constants of the ground vibrational state: A0=4.303 cm−1, B0= 3.504 cm−1, C0= 3.049 cm−1.  相似文献   

10.
Monolithic macroporous zirconia (ZrO2) derived from ionic precursors has been successfully fabricated via the epoxide-mediated sol-gel route accompanied by phase separation in the presence of propylene oxide (PO) and poly(ethylene oxide) (PEO). The addition of PO used as an acid scavenger mediates the gelation, whereas PEO enhances the polymerization-induced phase separation. The appropriate choice of the starting compositions allows the production of a macroporous zirconia monolith with a porosity of 52.9% and a Brunauer–Emmett–Teller (BET) surface area of 171.9 m2 · g−1. The resultant dried gel is amorphous, whereas tetragonal ZrO2 and monoclinic ZrO2 are precipitated at 400 and 600 °C, respectively, without spoiling the macroporous morphology. After solvothermal treatment with an ethanol solution of ammonia, tetragonal ZrO2 monoliths with smooth skeletons and well-defined mesopores can be obtained, and the BET surface area is enhanced to 583.8 m2 · g−1.  相似文献   

11.
Metal surfaces in contact with water, surfactants and biopolymers experience attractive polarization owing to induced charges. This fundamental physical interaction complements stronger epitaxial and covalent surface interactions and remains difficult to measure experimentally. We present a first step to quantify polarization on even gold (Au) surfaces in contact with water and with aqueous solutions of peptides of different charge state (A3 and Flg-Na3) by molecular dynamics simulation in all-atomic resolution and a posteriori computation of the image potential. Attractive polarization scales with the magnitude of atomic charges and with the length of multi-poles in the aqueous phase such as the distance between cationic and anionic groups. The polarization energy per surface area is similar on aqueous Au {1 1 1} and Au {1 0 0} interfaces of approximately −50 mJ m−2 and decreases to −70 mJ m−2 in the presence of charged peptides. In molecular terms, the polarization energy corresponds to −2.3 and −0.1 kJ mol−1 for water in the first and second molecular layers on the metal surface, and to between −40 and 0 kJ mol−1 for individual amino acids in the peptides depending on the charge state, multi-pole length and proximity to the surface. The net contribution of polarization to peptide adsorption on the metal surface is determined by the balance between polarization by the peptide and loss of polarization by replaced surface-bound water. On metal surfaces with significant epitaxial attraction of peptides such as Au {1 1 1}, polarization contributes only 10–20% to total adsorption related to similar polarity of water and of amino acids. On metal surfaces with weak epitaxial attraction of peptides such as Au {1 0 0}, polarization is a major contribution to adsorption, especially for charged peptides (−80 kJ mol−1 for peptide Flg-Na3). A remaining water interlayer between the metal surface and the peptide then reduces losses in polarization energy by replaced surface-bound water. Computed polarization energies are sensitive to the precise location of the image plane (within tenths of Angstroms near the jellium edge). The computational method can be extended to complex nanometre and micrometer-size surface topologies.  相似文献   

12.
Earlier studies of the dissociation constants of monoethanolammonium and diethanolammonium ions and the thermodynamic constants for the dissociation processes have been supplemented by a similar study of triethanolammonium ion from 0° to 50° C. The dissociation constant (Kbh) is given by the formula ?log Kbh = 1341.16/T + 4.6252 ? 0.0045666Twhere T is in degrees Kelvin. The order of acidic strengths of the ions is as follows: Triethanolammonium >diethanolammonium>monethanolammonium. Conversely, monoethanolamine is the strongest of the three bases. The thermodynamic constants for the dissociation of one mole of triethanolammonium ion in the standard state at 25° C are as follows: Heat content change (ΔH°) 33.450 joule mole−1; entropy change (ΔS°), −36.4 joule deg−1 mole−1; heat-capacity change (ΔCp°), 52 joule deg−1 mole−1.  相似文献   

13.
We have studied the isotopes 82Rb45, 83Rb46, and 84Rb47 to search for magnetic rotation which is predicted in the tilted-axis cranking model for a certain mass region around A = 80. Excited states in these nuclei were populated via the reaction 11B + 76Ge with E = 50 MeV at the XTU tandem accelerator of the LNL Legnaro. Based on a γ-coincidence experiment using the spectrometer GASP we have found magnetic dipole bands in each studied nuclide. The regular M1 bands observed in the odd-odd nuclei 82Rb and 84Rb include B(M1)/B(E2) ratios decreasing smoothly with increasing spin in a range of 13 ≤ Jπ ≤ 16. These bands are interpreted in the tilted-axis cranking model on the basis of four-quasiparticle configurations of the type π(fp)πg9/22νg9/2. This is the first evidence of magnetic rotation in the A ≈ 80 region. In contrast, the M1 sequences in the odd-even nucleus 83Rb are not regular, and the B(M1)/B(E2) ratios show a pronounced staggering.  相似文献   

14.
Iron chalcogenides, binary FeSe, FeTe and ternary FeTexSe1−x, FeTexS1−x and FeTe:Ox, are the simplest compounds amongst the recently discovered iron-based superconductors. Thin films of iron chalcogenides present many attractive features that are covered in this review, such as: (i) easy fabrication and epitaxial growth on common single-crystal substrates; (ii) strong enhancement of superconducting transition temperature with respect to the bulk parent compounds (in FeTe0.5Se0.5, zero-resistance transition temperature Tc0bulk = 13.5 K, but Tc0film = 19 K on LaAlO3 substrate); (iii) high critical current density (Jc ∼ 0.5 ×106 A cm2 at 4.2 K and 0 T for FeTe0.5Se0.5 film deposited on CaF2, and similar values on flexible metallic substrates (Hastelloy tapes buffered by ion-beam assisted deposition) with a weak dependence on magnetic field; (iv) high upper critical field (∼50 T for FeTe0.5Se0.5, Bc2(0), with a low anisotropy, γ ∼ 2). These highlights explain why thin films of iron chalcogenides have been widely studied in recent years and are considered as promising materials for applications requiring high magnetic fields (20–50 T) and low temperatures (2–10 K).  相似文献   

15.
The micromechanical properties of spider air flow hair sensilla (trichobothria) were characterized with nanometre resolution using surface force spectroscopy (SFS) under conditions of different constant deflection angular velocities (rad s−1) for hairs 900–950 μm long prior to shortening for measurement purposes. In the range of angular velocities examined (4×10−4−2.6×10−1 rad s−1), the torque T (Nm) resisting hair motion and its time rate of change (Nm s−1) were found to vary with deflection velocity according to power functions. In this range of angular velocities, the motion of the hair is most accurately captured by a three-parameter solid model, which numerically describes the properties of the hair suspension. A fit of the three-parameter model (3p) to the experimental data yielded the two torsional restoring parameters, S 3p=2.91×10−11 Nm rad−1 and =2.77×10−11 Nm rad−1 and the damping parameter R 3p=1.46×10−12 Nm s rad−1. For angular velocities larger than 0.05 rad s−1, which are common under natural conditions, a more accurate angular momentum equation was found to be given by a two-parameter Kelvin solid model. For this case, the multiple regression fit yielded S 2p=4.89×10−11 Nm rad−1 and R 2p=2.83×10−14 Nm s rad−1 for the model parameters. While the two-parameter model has been used extensively in earlier work primarily at high hair angular velocities, to correctly capture the motion of the hair at both low and high angular velocities it is necessary to employ the three-parameter model. It is suggested that the viscoelastic mechanical properties of the hair suspension work to promote the phasic response behaviour of the sensilla.  相似文献   

16.
The I ii spectrum has been excited in electrodeless lamps and photographed from 655 A to 11084 A. Wavelengths and estimated intensities are given for almost 2,400 lines. A revision and extension of the earlier analyses of this spectrum has increased the number of known even levels from 43 to 124, and the number of odd levels from 55 to 190. New gJ-factors are given for 46 levels, and the previous designations of 40 levels are changed. Improved measurements in the vacuum ultraviolet region give a correction of 7.4 cm−1 to be subtracted from the values listed in Atomic Energy Levels, Vol. 3 (1958), for all levels above the ground configuration. The approximately 1,800 classified lines now include all of the strongest lines. The 1S0 of the ground configuration 5s25p4 has been found, and this configuration has been fitted to intermediate coupling theory. Magnetic dipole transitions between levels of the ground configuration, 3P21D2 (7282 A) and 3P11S0 (4460 A), have been observed and their nature confirmed by the Zeeman effect. The line 5p4 3P21D2 shows hyperfine structure which is in approximate agreement with a theoretical calculation of the expected structure. New levels have been found for almost all higher configurations. All previously known series have been extended and new ones found. From one of the new series, 5p3(4S°)512g5G6°, the principal ionization energy for I ii (154304 ±1 cm−1) has been derived. The results of the analysis are compared with theoretical expectations in a number of cases.  相似文献   

17.
Self-diffusion coefficients of poly(ethylene glycol)2k-derivatized lipids (DSPE-PEG2k-CF) in glass-supported DOPC phospholipid bilayers are ascertained from quantitative fluorescence recovery after photobleaching (FRAP). We developed a first-order reaction–diffusion model to ascertain the bleaching constant, mobile fraction and lipopolymer self-diffusion coefficient Ds at concentrations in the range c ≈ 0.5–5 mol%. In contrast to control experiments with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl) (ammonium salt) (DOPE-NBD) in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), the lipopolymer self-diffusion coefficient decreases monotonically with increasing concentration, without a distinguishing mushroom-to-brush transition. Our data yield a correlation Ds = D0/(1 + αc), where D0 ≈ 3.36 µm2 s−1 and α ≈ 0.56 (with c expressed as a mole percent). Interpreting the dilute limit with the Scalettar–Abney–Owicki statistical mechanical theory for transmembrane proteins yields an effective disc radius ae ≈ 2.41 nm. On the other hand, the Bussell–Koch–Hammer theory, which includes hydrodynamic interactions, yields ae ≈ 2.92 nm. As expected, both measures are smaller than the Flory radius of the 2 kDa poly(ethylene glycol) (PEG) chains, RF ≈ 3.83 nm, and significantly larger than the nominal radius of the phospholipid heads, al ≈ 0.46 nm. The diffusion coefficient at infinite dilution D0 was interpreted using the Evans–Sackmann theory, furnishing an inter-leaflet frictional drag coefficient bs ≈ 1.33 × 108 N s m−3. Our results suggest that lipopolymer interactions are dominated by the excluded volume of the PEG-chain segments, with frictional drag dominated by the two-dimensional bilayer hydrodynamics.  相似文献   

18.
We consider the feasibility of basing a pressure standard on measurements of the dielectric constant ϵ and the thermodynamic temperature T of helium near 0 °C. The pressure p of the helium would be calculated from fundamental constants, quantum mechanics, and statistical mechanics. At present, the relative standard uncertainty of the pressure ur(p) would exceed 20 × 10−6, the relative uncertainty of the value of the molar polarizability of helium Aϵ calculated ab initio. If the relativistic corrections to Aϵ were calculated as accurately as the classical value is now known, a capacitance-based pressure standard might attain ur(p) < 6 × 10−6 for pressures near 1 MPa, a result of considerable interest for pressure metrology. One obtains p by eliminating the density from the virial expansions for p and ϵ − 1. If ϵ − 1 were measured with a very stable, 0.5 pF toroidal cross capacitor, the small capacitance and the small values of ϵ − 1 would require state-of-the-art capacitance measurements to achieve a useful pressure standard.  相似文献   

19.
We report a preliminary value for the zero magnetic field Na 2S(f = 1, m = − 1) + Na 2S(f = 1, m = − 1) scattering length, a1,−1. This parameter describes the low-energy elastic two-body processes in a dilute gas of composite bosons and determines, to a large extent, the macroscopic wavefunction of a Bose condensate in a trap. Our scattering length is obtained from photoassociative spectroscopy with samples of uncondensed atoms. The temperature of the atoms is sufficiently low that contributions from the three lowest partial waves dominate the spectrum. The observed lineshapes for the purely long-range 0g molecular state enable us to establish key features of the ground state scattering wavefunction. The fortuitous occurrence of a p-wave node near the deepest point (Re = 72 a0) of the 0g potential curve is instrumental in determining a1,−1 = (52 ± 5) a0 and a2.2 = (85 ± 3) a0, where the latter is for a collision of two Na 2S(f = 2, m = 2) atoms.  相似文献   

20.
We report a preliminary value for the zero magnetic field Na 2S(f = 1, m = − 1) + Na 2S(f = 1, m = − 1) scattering length, a1,−1. This parameter describes the low-energy elastic two-body processes in a dilute gas of composite bosons and determines, to a large extent, the macroscopic wavefunction of a Bose condensate in a trap. Our scattering length is obtained from photoassociative spectroscopy with samples of uncondensed atoms. The temperature of the atoms is sufficiently low that contributions from the three lowest partial waves dominate the spectrum. The observed lineshapes for the purely long-range 0g molecular state enable us to establish key features of the ground state scattering wavefunction. The fortuitous occurrence of a p-wave node near the deepest point (Re = 72 a0) of the 0g potential curve is instrumental in determining a1,−1 = (52 ± 5) a0 and a2,2 = (85 ± 3) a0, where the latter is for a collision of two Na 2S(f = 2, m = 2) atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号