首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The precursor of CaCu3Ti4O12 (CCTO) nano particles have been successfully synthesized by sol–gel method at 90 °C. The dried precursor powder was milled and then calcined at 450 °C, 550 °C, 650 °C, 800 °C, 850 °C and 950 °C for 3 h. The phase formation of CCTO was analyzed by step by step using FTIR and XRD. Particle size and shape were evaluated by AFM. The XRD results of the powder calcined at 800 °C indicated the formation of CCTO phase. AFM studies showed that average particle size of the CCTO powder range 90–120 nm. The absorption bands corresponding to vibrations of CaO, CuO and TiOTi were observed at 606, 525 and 463 cm? 1 using FTIR. The samples sintered at 1040 °C showed the densities as high as 96% of theoretical density. The grain sizes of sintered pellets were determined by FE-SEM. The dielectric properties of prepared samples were studied by LCR meter.  相似文献   

2.
Well-defined hexagonal nanosheets of layered zinc hydroxysulfate (Zn(OH)2)3(ZnSO4)(H2O)5 with the side length of 1–20 μm and thickness of ∼50 nm has been synthesized by the thermal treatment of ZnSO4–hexamethylenetetramine precursor in water–ethanol mixed solvent at 75 °C. The sheet-like morphology was found to closely depend upon the experimental conditions, such as the solvent and the precursor composition. In particular, the products can be easily converted to ZnO nanosheets upon exposing to the irradiation of electron beam.  相似文献   

3.
《Optical Materials》2014,36(12):2366-2371
Tris-(8-hydroxyquinioline) aluminium (Alq3) is widely used in organic light emitting diodes as an emission and electron transport layer. In this study the effect of solvent molecules, in the solid state crystal lattice, on the photoluminescence properties of synthesized mer-tris(8-Hydroxy-quinolinato-N, O)-indium(iii) hydrate 0.5 methanol solvate (mer-[In(qn)3]⋅H2O⋅0.5 CH3OH) was studied. Single crystals were obtained through a recrystallization process and single crystal X-ray diffraction was performed to obtain the unit cell structure. The main absorption peaks were assigned to ligand centered electronic transitions, while the solid state photoluminescence excitation peak at 440 nm was assigned to the 0–0 vibronic state of In(qn)3. Broad emission at 510 nm was observed and was ascribed to the relaxation of an excited electron from the S1–S0 level. A powder sample was annealed at 130 °C for 2 h. A decrease in intensity was observed and could possibly be assigned to a loss of solvent species. To study the photon degradation, the sample was irradiated with an UV lamp for ∼15 h. The emission data was collected and the change in photoluminescence intensity with time was monitored. High resolution X-ray photoelectron spectroscopy (XPS) scans of the O-1s peak revealed that after annealing the binding energy shifted to lower energies indicating a possible loss of the H2O and CH3OH present in the crystal. The O-1s peak of the degraded sample indicated the possible formation of CO (∼532.5 eV), COH and OCOH (∼530.5 eV) on the phenoxide ring.  相似文献   

4.
In microelectronics industry, integration of the low dielectric constant (low-k) material films is a continuing issue due to the decreasing device feature size. To improve electric properties, various post-deposition treatments of the low-k material films can be used. In this work, we used room temperature treatment of He/H2 plasma and investigated the effects of plasma treatment on the electrical properties of low-k SiOCH films. Plasma treatment time changed from 300 to 1800 s. After treatment, the dielectric constant was decreased from 2.9 to 2.48, and the thickness of the low-k SiCOH films changed by only ~5%. The leakage current densities of the low-k SiCOH films were decreased to ~10?11 A/cm2, with treatment time ≥600 s. The breakdown occurred only around 2 V for films plasma-treated for 600 and 900 s. However, for 1800 s treatment time, the breakdown voltage was enhanced dramatically and breakdown occurred at applied voltage higher than 40 V. The surface composition change of the films after treatment was investigated by X-ray photoelectron spectroscopy (XPS). As the plasma treatment time was increased, the intensities of CC/CH and CSi peaks were decreased while the intensities of SiO and CO peaks were increased. It is thought that increase of oxygen content of the SiCOH film, after plasma treatment, contributed to leakage current reduction and breakdown voltage increase.  相似文献   

5.
Several nanoporous Fe_2 O_3-xSx/S-doped g-C_3 N_4(CNS) Z-scheme hybrid heterojuctions have been successfully synthesized by one-pot in situ growth of the Fe_2O_3-xSx particles on the surface of CNS. The characterization results show that S-doping in the g-C3 N4 backbone can greatly enhance the charge mobility and visible light harvesting capability. In addition, porous morphology of hybrid composite provides available open pores for guest molecules and also improves light absorbing property due to existence of multiple scattering effects. More importantly, the Fe_2 O_3-xSx nanoparticles formed intimate heterojunction with CNS and developed the efficient charge transfer by extending interfacial interactions occurred at the interfaces of both components. It has been found that the Fe_2 O_3-xSx/CNS composites have an enhanced photocatalytic activity under visible light irradiation compared with isolated Fe_2 O_3 and CNS components toward the photocatalytic degradation of methylene blue(MB). The optimal loaded Fe_2 O_3-xSx value obtained is equal to 6.6 wt% that provided 82% MB photodegradation after 150 min with a reaction rate constant of 0.0092 min~(-1) which was faster than those of the pure Fe_2 O_3(0.0016 min~(-1))and CNS(0.0044 min~(-1)) under the optimized operating variables acquired by the response surface methodology. The specific surface area and the pore volume of Fe_2 O_3(6.6)/CNS hybrid are 33.5 m~2/g and0.195 cm~3/g, which are nearly 3.8 and 7.5 times greater compared with those of the CNS, respectively. The TEM image of Fe_2 O_3(6.6)/CNS nanocomposite exhibits a nanoporous morphology with abundant uniform pore sizes of around 25 nm. Using the Mott-Schottky plot, the conduction and valence bands of the CNS are measured(at pH = 7) equal to-1.07 and 1.48 V versus normal hydrogen electrode(NHE), respectively.Trapping tests prove that ·OH-and ·O_2-radicals are major active species in the photocatalytic reaction.It has been established that formation of the Z-scheme Fe_2 O_3(6.6)/CNS heterojunction between CNS and Fe_2 O_3 directly produces ·OH as well as ·O_2-radicals which is consistent with the results obtained from trapping experiments.  相似文献   

6.
This paper examines the phase transformation, pore evolution, microstructural and mechanical changes that occur in inorganic polymer cement (IPC) in the presence of three different grade of fine aggregates (ф < 100 μm) of ladle slag, nepheline syenite and quartz sand. Experimental results indicate that polycondensation was enhanced in nepheline syenite based specimens, compared to quartz sand, due to the increase in HMAS phases in relation to the dissolution and interaction of amorphous/disordered fraction of aggregates. HCS and HCAS with HMAS phases were identified in the ladle slag based specimens. The formation of these new phases reduced both the cumulative pore volume and pores size. The apparent increase in volume of capillary pores in ladle slag based specimens was explained by the residual bubbles from the carbonates included in raw slag. The flexural strength of the inorganic polymer cement increases from 4 MPa to 4.2, 4.8 and 6.8 MPa with the addition of 20 wt% of quartz sand, nepheline syenite and ladle slag respectively. These values increase significantly between 28 and 180 days of curing (9.1 MPa for ladle slag and 10.0 MPa for nepheline syenite). It was concluded that fines can be used to remove the HM and poorly bounded alumina oligomers in metakaolin based inorganic polymer matrices and improve the interfacial zone for the design of an optimum grade and high-performance composites.  相似文献   

7.
Phase-pure calcium copper titanate (CaCu3Ti4O12, CCTO) ceramic particles were synthesized via a sol–gel route. The CCTO was treated by bis[3-(triethoxysilyl)propyl]tetrasulfide (Si69) to give CCTO@Si69. The dielectric composites based on CCTO (or CCTO@Si69) and polyvinylidene fluoride (PVDF) were molded with desirable dielectric properties by mechanical mixing process and hot-pressing. The structures of CCTO and CCTO@Si69 were investigated by scanning electron microscopy (SEM) energy spectrum, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy. The stretching vibration of SO at 1096 cm−1 in FTIR is an indication that chemical bond was formed between Si69 and CCTO. The influence of Si69 on the preparation and the dielectric properties of CCTO/PVDF dielectric composites were discussed. When the content of Si69 was 0.1 mL (relative to 1 g of CCTO), the dielectric constant (ε) (at a frequency of 1 kHz) of CCTO@Si69/PVDF composites reached the maximum value of 84, this value is 5.25 times that of an equal amount of CCTO of CCTO/PVDF composites (ε  16). The CCTO/PVDF and CCTO@Si69/PVDF composites had very stable dielectric properties over a wide range of temperatures (20–160 °C). These composites can be applied as high-energy–density capacitors in electronic and electrical engineering fields.  相似文献   

8.
In this study, the mechanical substrate and topographical surface properties of anodized Ti30Ta alloy were investigated using scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS) and contact angle measurement. The anodization process was performed in an electrolyte solution containing HF (48%) and H2SO4 (98%) in the volumetric ratios 1:9 with the addition of 5% dimethyl sulfoxide (DMSO) at 15 V, 25 V and 35 V for 20 and 40 min, producing a nanotube architecture when anodized at 35 V for 40 min. Human dermal fibroblasts (HDF, neonatal) were utilized to evaluate the biocompatibility of Ti30Ta nanotubes and Ti30Ta alloy after 1 and 3 days of culture. Cellular adhesion, proliferation, viability, cytoskeletal organization and morphology were investigated using fluorescence microscope imaging, biochemical assay and SEM imaging respectively. The results presented identify altered material properties and improved cellular interaction on Ti30Ta nanotubes as compared to Ti30 Ta alloy.  相似文献   

9.
Sn0.96−xLa0.04CuxO2 (0  x  0.03) nanocrystals have been successfully synthesized by employing a simple co-precipitation method. The crystal structure of the synthesized nanocrystals was found to be tetragonal rutile of tin oxide by using X-ray diffraction technique and was not affected by doping. The change in lattice parameters was discussed based on the secondary phase formation and presence of Cu2+/Cu3+ in LaSnO2 lattice. The variation in size and shape of the nanocrystals by Cu-doping was discussed using scanning electron microscope. The chemical stoichiometry of Sn, Cu, La and O was confirmed by energy dispersive X-ray spectra. The best optical transparency and lower absorption observed at Sn0.97La0.02Cu0.01O2 nanocrystals seems to be optimal for industrial applications especially as transparent electrode. The initial blue shift of energy gap from 3.65 eV (Cu = 0%) to 3.78 eV (Cu = 1%) (ΔEg  0.13 eV) is due to the distortion in the crystal structure of the host compound and generation of defects. The red shift of energy gap after Cu = 1% is due to the charge-transfer transitions between the metal ions d-electrons and the SnO2 conduction or valence band. Lattice mode of SnO2 at 686 cm−1 in Sn0.98La0.02O2 nanocrystals and anti-symmetric SnOSn stretching mode of the surface bridging oxide around 634–642 cm−1 in Cu doped Sn0.98La0.02O2 nanocrystals was confirmed by Fourier transform infrared spectra.  相似文献   

10.
A lot of studies have been devoted to the porous Si, erbium-doped Si and Si-embedded in dielectric matrix of SiO or SiN together with long-time conventional furnace annealing. Besides, it is noted that these Si nanostructured films were highly resistive and non-conducting. In this paper, we have investigated the effect of annealing temperature on the microstructure and photoluminescence of low-resistivity Si/SiN/TaN nanocomposite thin films which are deposited by magnetron sputtering and followed by rapid thermal annealing (RTA). All samples are of luminescence and staying low resistivity at about 1462–2162 μΩ cm which increases with increasing annealing temperatures. The asymmetric broad photoluminescence (PL) peak covered the wavelengths of 400–700 nm. The wide visible PL spectra can be deconvoluted into three bands of blue (~ 455 nm), green-yellow (~ 525 nm), and orange emissions (~ 665 nm), which correspond to the emission origins from unsatisfied states in imperfections of interface between the Si:O and SiN:O, located states related to the mixed SiO or SiN bonds in SiN:O layer and nc-Si embedded in SiN:O matrix. The detailed mechanism of broad visible PL was investigated in terms of microstructure and bonding configuration evolution. The relationship between the annealing temperature, microstructure and PL behavior of Si/SiN/TaN multilayer films is discussed and established.  相似文献   

11.
《Optical Materials》2014,36(12):2241-2249
Undoped and Yttrium doped ZnO nanopowders (Zn1−xYxO, 0  x  0.05) were prepared by sol–gel method and annealed at 500 °C for 4 h under air atmosphere. The prepared nanopowders were characterized by powder X-ray diffraction, energy dispersive X-ray spectra, UV–Visible spectrophotometer and Fourier transform infrared spectroscopy. The EDS analysis confirmed the presence of Y in the ZnO system. Both atomic and weight percentages were nearly equal to their nominal stoichiometry within the experimental error. XRD measurement revealed the prepared nanoparticles have different microstructures without changing a hexagonal wurtzite structure. The calculated average crystallite size decreased from 26.1 to 23.2 nm for x = 0–0.02 then reached 24.1 nm for x = 0.05. The change in lattice parameters was demonstrated by the crystal size, bond length, micro-strain and the quantum confinement effect. The observed blue shift of energy gap from 3.36 eV (Y = 0) to 3. 76 eV (Y = 0.05) (ΔEg = 0.4 eV) revealed the substitution of Y3+ ions into ZnO lattice. The presence of functional groups and the chemical bonding are confirmed by FTIR spectra. The appreciable enhancement of PL intensity with slight blue shift in near band edge (NBE) emission from 396 to 387 nm and a red shift of green band (GB) emission from 513 to 527 nm with large reduction in intensity confirm the substitution of Y into the ZnO lattice. Y-doped ZnO is useful to tune the emission wavelength and hence is appreciable for the development of supersensitive UV detector.  相似文献   

12.
《Materials Research Bulletin》2013,48(11):4601-4605
Bi@Bi2O3@carboxylate-rich carbon core-shell nanosturctures (Bi@Bi2O3@CRCSs) have been synthesized via a one-step method. The core–shell nanosturctures of the as-prepared samples were confirmed by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and Raman spectroscopy. The formation of Bi@Bi2O3@CRCSs core–shell nanosturctures should attribute to the synergetic roles of different functional groups of sodium gluconate. Bi@Bi2O3@CRCSs exhibits significant enhanced photocatalytic activity under visible light irradiation (λ > 420 nm) and shows an O2-dependent feature. According to trapping experiments of radicals and holes, hydroxyl radicals were not the main active oxidative species in the photocatalytic degradation of MB, but O2 are the main active oxidative species.  相似文献   

13.
To improve the oxidation resistance of MoSi fused slurry coating fabricated in vacuum, MoSiN multi-layer coatings were synthesized on C/C composites in nitrogen atmosphere by fused slurry using same Mo and Si element powders. The phase compositions and microstructures were characterized by X-ray diffractometry (XRD), optical microscopy (OM), scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS). The results indicate that the MoSiN coating contains SiC inner layer and MoSi2/Si main layer, which was similar with MoSi coating. Additionally, a thin outer layer with nano-filiform morphology has been found on the coating surface, which consists of SiC, Si3N4, AlN, Al2O3 and sialon phase. Oxidation experiments show that the MoSiN multi-layer coating exhibits excellent oxidation resistance at 1400 °C and anti-oxidizing potential ability at 1450 °C.  相似文献   

14.
Crystals of a new hybrid compound C8H12N+, HSO4?·H2O were synthesized in aqueous solution and characterized by X-ray diffraction and IR absorption spectroscopy. This compound crystallizes in the orthorhombic non-centrosymmetrical space group P212121 and an unit cell with a = 5.74(2) Å, b = 9.17(2) Å, c = 21.34(4) Å, V = 1124(6) Å3, and Z = 4. Its crystal structure is a packing of alternated inorganic and organic layers parallel to (a,b) planes. The different components are connected by a bi-dimensional network of strong OH…O and NH…O hydrogen bonds. Then, in order to detect phase transitions and watch changes in the conductivity behaviour, investigations by DTA–TG and differential scanning calorimetry (DSC) and electrical conductivity measurements were carried out.  相似文献   

15.
《Materials Research Bulletin》2006,41(6):1112-1117
Transparent 45SiO225Al2O35CaO10NaF15CaF2 glass ceramics doped with different levels of Er3+ were prepared. The spherical CaF2 nanocrystals with 10–20 nm in size were verified to be homogeneously embedded among the glassy matrix. Room temperature absorption and emission spectra corresponding to 4I13/2  4I15/2 transitions of Er3+ ions in precursor glasses and glass ceramics, respectively had been measured. For glass ceramics, with increasing of Er3+ content from 0.1 to 2.0 mol%, the FWHM values of the emission bands increased from 42 to 71 nm; meanwhile, the lifetime of 4I13/2 level slightly reduced. However, both the values of FWHM and lifetime were larger than those of precursor glasses due to the change of ligand field of Er3+ ions.  相似文献   

16.
Sol–gel derived TiO2/SiO2/ormosil hybrid planar waveguides have been deposited on soda-lime glass slides and silicon substrates, films were heat treated at 150 °C for 2 h or dried at room temperature. Different amounts of water were added to sols to study their impacts on microstructures and optical properties of films. The samples were characterized by m-line spectroscopy, Fourier transform infrared spectroscopy (FT-IR), UV/VIS/NIR spectrophotometer (UV–vis), atomic force microscopy (AFM), thermal analysis instrument and scattering-detection method. The refractive index was found to have the largest value at the molar ratio H2O/OR = 1 in sol (OR means OCH3, OC2H5 and OC4H9 in the sol), whereas the thickest film appears at H2O/OR = 1/2. The rms surface roughness of all the films is lower than 1.1 nm, and increases with the increase of water content in sol. Higher water content leads to higher attenuation of film.  相似文献   

17.
We have studied 5 MeV Au2+ ion implantation with fluences between 7 × 107 and 2 × 108 cm 2 in Si by deep level transient spectroscopy (DLTS) and scanning capacitance microscopy (SCM). The DLTS measurements show formation of electrically active defects such as the two negative charge states of the divacancy (V2(/–) and V2(–/0)) and the vacancy–oxygen (VO) center. It is observed that the intensity of the V2(/–) peak is lower compared to that of V2(–/0) by a factor of 5. This has been attributed to a highly localized distribution of the defects along the ion tracks, which results in trapping of the carriers at V2(–/0) and incomplete occupancy of V2(/–). The SCM measurements obtained in a plan view show a random pattern of regions with a reduced SCM signal for the samples implanted with fluence above 2 × 108 cm 2. The reduced SCM signal is attributed to extra charges associated with acceptor states, such as V2(–/0), formed along the ion tracks in the bulk Si. Indeed, the electron emission rate from the V2(–/0) state is in the range of 10 kHz at room temperature, which is well below the probing frequency of the SCM measurements, resulting in “freezing” of electrons at V2(–/0).  相似文献   

18.
XRD, IR spectra, DTA, density, oxygen molar volume and dc conductivity of barium vanadate glasses of compositions xBaO(100  x)V2O5, where x = 30, 35, 40, 45 and 50 mol%, are reported. The IR studies of the glasses suggest the glass network is built up of mainly VO4 polyhedra. The glass transition temperatures are observed to increase with an increase of BaO content in the compositions. The cross-linking density decrease with increasing BaO content in the compositions. Introduction of BaO into the V2O5 matrix changes the 2D layer structure of the crystalline V2O5 into a more complicated 3D structure. Analysis of the electrical properties has been made in the light of small polaron hopping model. The parameters obtained from the fits of the experimental data to this model are reasonable and consistent with glass composition. The conduction is attributed to non-adiabatic hopping of small polaron.  相似文献   

19.
The colorless sample of Sr2MgWO6 was prepared by conventional solid-state reaction of stoichiometric amounts of SrCO3, WO3 and MgO and characterized by powder X-ray diffraction (XRD) studies. In the temperature range of 300–15 K, detailed structural studies on Sr2MgWO6 were carried out by Rietveld refinements of the observed powder neutron diffraction (ND) data. At ambient temperature Sr2MgWO6 crystallizes in tetragonal (space group I4/m) lattice with unit cell parameters: a = 5.5882(2) and c = 7.9452(7) Å, V = 248.11(3) Å3, Z = 2. This tetragonal (I4/m) structure is retained down to 15 K. The structural analysis of the sample at different temperatures indicates no appreciable change in the MgO and WO bond lengths. However, a decrease in the tilt angle is observed with increasing temperature. The negative thermal expansion of the c-axis is attributed to increasing transverse displacement amplitude of the bridging oxygen atoms along this axis.  相似文献   

20.
Rutile-doped hematite xTiO2(1 ? x)α-Fe2O3 (x = 0.0–1.0) nanostructures were synthesized using mechanochemical activation by ball milling. Their complex structural, magnetic and thermal properties were characterized by X-ray diffraction, Mössbauer spectroscopy and simultaneous DSC–TGA. XRD patterns yielded the dependence of lattice parameters and grain size as a function of ball milling time. For the molar concentrations x = 0.1 and 0.3, the Mössbauer spectra were fitted with one, two, three or four sextets, corresponding to the degree of Ti ion substitution of Fe ions in hematite lattice. After 12 h of ball milling, the completion of Ti ion substitution of Fe ions in hematite lattice occurs for x = 0.1 and 0.3. For x = 0.5 and 0.7, Mössbauer spectra fitting required sextets and a quadrupole-split doublet, representing Fe ions substituting Ti ions in the rutile lattice. The completion of Fe ion substitution of Ti ions in rutile lattice was not observed, as indicated by XRD patterns and Mössbauer spectra for these two molar concentrations. Simultaneous DSC–TGA measurements revealed that the mechanochemical activation by ball milling has a strong effect on the thermal behavior of this nanostructure system. The enthalpy dropped dramatically after 2 h of milling time, indicating the strong solid–solid interactions between TiO2 and α-Fe2O3 after ball milling. The change in weight loss of hematite was caused by the decrease of grain size and ion substitutions between Fe and Ti after mechanochemical activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号