首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
《Fusion Engineering and Design》2014,89(9-10):2062-2065
Behavior of tritium transfer through hydrophobic paints of epoxy and acrylic-silicon resin was investigated experimentally. The amounts of tritium permeating through their paint membranes were measured under the HTO concentration condition of 2–96 Bq/cm3. Most of tritium permeated through the paints as a molecular form of HTO at room temperature. The rate of tritium permeating through the acrylic-silicon paint was correlated in terms of a linear sorption/release model, and that through the epoxy paint was controlled by a diffusion model. Although effective diffusivity estimated by a diffusion model was obtained 1.1 × 10−13–1.8 × 10−13 m2/s for epoxy membranes at the temperature of 21–26 °C, its value was found to be hundreds times larger than that for cement-paste coated with epoxy paint. Hence, resistance of tritium diffusion through interface between cement-paste and the epoxy paint was considered to be the most effective in the overall tritium transfer process. Clarification of tritium transfer behavior at the interface is important to understand the mechanism of tritium transfer in concrete walls coated with various paints.  相似文献   

2.
The project ITER aims to demonstrate that fusion is the energy source of the future. The prototype Tokamak machine is intended to start operation at about 2019 and tritium is one of the major contaminants that can be accidentally released in the environment. Nowadays environmental tritium levels are of natural origin except in the vicinity of nuclear facilities. The evaluation of background tritium levels is essential in the context of a future possibility of accidental tritium releases. For this purpose and also because of the lack of relevant information, an extended programme of river and rain water sampling was implemented in north-western Greece. Water samples from six major rivers in this area and rain water samples were analysed for tritium content. The rivers under investigation were Aliakmonas River, Pinios River, Arachthos River, Kalamas River, Aoos River and Louros River, which originate from the central Greek mountain range Pindos, and flow to Aegean and Ionian Sea.The tritium concentrations were determined by the Liquid Scintillator Analyser Tri-Carb 3170TR/SL. The statistical analysis of data revealed that there is a seasonal variation of tritium concentration in rain samples and a less pronounced seasonal variation in river samples. The weighted mean tritium concentration for rain samples was determined equal to 0.90 ± 0.08 Bq L?1 (7.6 ± 0.7 TU) and the respective mean value for river samples was 0.94 ± 0.04 Bq L?1 (7.9 ± 0.3 TU). Further analysis has demonstrated that river waters tend to show lower tritium concentrations than the concurrently measured tritium concentrations in rain samples, during spring and summer (at 47% and 71% of the sampling stations, respectively), while this observation is reversed during autumn and winter (at 44% and 35% of the sampling stations, respectively). This may be attributed to rain water remaining underground for a long period allowing tritium to decay and when it reappears as river water, the tritium concentration values are lower when compared to the rain water concentrations. Rough estimates of the residence time of underground waters in the study area provided values, which ranged from 0.5 to 11.7 years, with a mean value of 5.2 ± 0.9 years.  相似文献   

3.
In future DT fusion machines, several events will generate highly tritiated water (HTW). Among potential techniques for HTW processing, isotopic swamping in a catalytic membrane reactor (PERMCAT) appears promising. The experimental demonstration of PERMCAT for HTW processing has started in the CAPER facility at the Tritium Laboratory of Karlsruhe (TLK). Without any HTW source, such water has to be produced on purpose.Catalytic HT oxidation would ensure clean operation but could be critical for operation due to possible occurrence of explosive mixture. A tritium compatible micro-channel catalytic reactor (μCCR) has been designed and manufactured to produce up to 10 mL min?1 of HTW with very high specific tritium activity (stoichiometric DTO: 5.2 × 1016 Bq kg?1). Prior to its integration in CAPER for tritium operation, this reactor has been commissioned at different feed flow rates, gas composition (air or Helium), and temperature. The results demonstrate the good performances of the μCCR in producing water.The combination of the μCCR with the O2 sensor represents a reliable system able to produce HTW in a safe way and without radioactive waste. Accordingly, the CAPER facility can be upgrade in order to continue the R&D activity on HTW processing with PERMCAT.  相似文献   

4.
Polyimide (PI), polyetheretherketone (PEEK) and polyethyleneterephthalate (PET) were implanted with 40 keV Ni+ ions at room temperature at fluences ranging from 1.0 × 1016 to 1.5 × 1017 ions cm?2 and with ion current density varying between 4 and 10 μA cm?2. The depth profiles of the implanted Ni atoms determined by the RBS technique were compared with those predicted by the SRIM and TRIDYN codes. Hydrogen depletion as a function of the ion fluence was determined by the ERDA technique, and the compositional and structural changes of the polymers were characterised by the UV–vis and XPS methods. The implanted profiles differed significantly from those predicted by the SRIM code while the lower fluences were satisfactorily described by the TRIDYN simulation. A significant hydrogen release from the polymer surface layer was observed along with significant changes in the surface layer composition. The UV–vis results indicated an increase in the concentration and conjugation of double bonds.  相似文献   

5.
Laser-induced breakdown spectroscopy (LIBS) is discussed as a possible method to characterize the composition, tritium retention and amount of material deposits on the first wall of fusion devices. The principle of the technique is the ablation of the co-deposited layer by a laser pulse with P (power density)  0.5 GW/cm2 and the spectroscopic analysis of the light emitted by the laser induced plasma. The typical spatial extension of the laser plasma plume is in the order of 1 cm with typical plasma parameters of ne  3 × 1022 m?3 and Te  1–2 eV averaged over the plasma lifetime which is below 1 μs. In this study “ITER-Like” mixed deposits with a thickness of about 2 μm and consisting of a mixture of W/Al/C and D on bulk tungsten substrates have been analyzed by LIBS to measure the composition and hydrogen isotopes content at different laser energies, ranging from about 2 J/cm2 (0.3 GW/cm2) to about 17 J/cm2 (2.4 GW/cm2) for 7 ns laser pulses. It is found that the laser energies above about 7 J/cm2 (1 GW/cm2) are needed to achieve the full removal of the deposit layer and identify a clear interface between the deposit and the bulk tungsten substrate by applying 15–20 laser pulses while hydrogen isotopes decrease strongly after the first laser pulse. Under these conditions, the evolution of the spectral line intensities of W/Al/C/hydrogen can be used to evaluate the layer composition.  相似文献   

6.
A flow-mode integrated sampler consisting of a wire-mesh and filter-paper array along with passive solid state nuclear track detectors has been developed for estimating unattached and attached fraction of 222Rn/220Rn progeny concentration. The essential element of this sampler is the direct 222Rn/220Rn progeny sensor (DRPS/DTPS), which is an absorber-mounted-LR115 type nuclear track detector that selectively registers the alpha particles emitted from the progeny deposited on its surface. During sampling at a specified flow-rate, the unattached progeny is captured on the wire-mesh; while the attached progeny gets transmitted and is captured on the filter-paper. The alpha particles emitted by the deposited progeny atoms are registered on the sensors placed at a specified distance facing the wire-mesh and the filter-paper, respectively. The various steps involved in the development of this flow-mode direct progeny sampler such as the optimization of the sampling rate and the distance between the sensor and the deposition substrate are discussed. The sensitivity factor of the DTPS-loaded sampler for 220Rn progeny deposited on the wire-mesh and filter-paper is found to be 23.77 ± 0.64 (track cm?2 h?1) (Bq m?3)?1 and 22.30 ± 0.18 (track cm?2 h?1) (Bq m?3)?1, respectively; while that of DRPS-loaded sampler for 222Rn progeny deposition, is 3.03 ± 0.14 (track cm?2 h?1) (Bq m?3)?1 and 2.08 ± 0.07 (track cm?2 h?1) (Bq m?3)?1, respectively. The highlight of this flow-mode sampler is its high sensitivity and that it utilizes the passive technique for estimating the unattached and attached progeny concentration, thus doing away with the alpha counting procedures.  相似文献   

7.
Tritium handling facilities use molecular sieve beds (MSB) to collect and recover tritiated water. After reaching the capacity limit of the MSB, the water is desorbed and decontaminated in a water detritiation system (WDS). In the case of highly tritiated water (HTW) absorbed into a MSB, an inherent safe option for processing is necessary due to the HTW specific properties. Ideally, HTW should be processed immediately in a continuous mode. With this in consideration, the water desorption process from a zeolite bed was developed and optimized in a dedicated non active facility. The results of this experiments were applied into the regeneration of a MSB previously loaded with HTW containing an activity of 1.9 × 1014 Bq kg?1. The water was desorbed, by step increasing the temperature bed and fed by helium carrier gas into the PERMCAT for detritiation and tritium recovery. The processed water was collected in a dry MSB downstream of the PERMCAT. These initial studies successfully demonstrate the viability of the process. The obtained results of the preliminary study and the subsequent tests with tritium, will provide useful information for the design of tritium processes relying on MSB, such as the water processing foreseen for the test blanket modules in ITER.  相似文献   

8.
For the design and development proposal of the European procurement package of the Water Detritiation System (WDS) for ITER, an experimental WDS was installed at the Tritium Laboratory Karlsruhe (TLK) to investigate the process and various components of the system. The WDS facility at TLK uses the Combined Electrolysis Catalytic Exchange (CECE) process and consists of two Solid Polymer Electrolyte (SPE) electrolysis cells and a stainless steel Liquid Phase Catalytic Exchange (LPCE) column with an effective length of 8 m. After installation and commissioning, the first experimental runs were performed with a tritium concentration up to 0.6 GBq kg?1 in the feed water to test the operation modes of the facility, all the safety installations and procedures and the performance of the LPCE column during a runtime of up to 130 h.Regarding the final design of the WDS for ITER, the first experiments indicated several aspects which had to be modified in order to enhance the procedural and operating performance of the facility.  相似文献   

9.
In the design of new slant tube for large sample irradiation in the Ghana Research Reactor-1 facility, Monte Carlo N-Particle Code version 5 (MCNP-5) was employed to simulate the neutron flux profile of the new design. The results show that the neutron flux peaks at different points, at an average thermal neutron flux of (1.1406 ± 0.0046) × 1011, (1.1849 ± 0.0047) × 1011 and (1.0580 ± 0.0044) × 1011 n cm?2 s?1 around the reactor vessel. The first two peaks happened to coincide with pneumatic transfer pipes in the pool, but the third peak happened to be in line with the slant tube position. It was observed that as the diameter of the tube varies from 3.90 cm to 23.40 cm, the average thermal neutron flux decreased exponentially from (1.1849 ± 0.0047)1011 n cm?2 s?1 to (3.3241 ± 0.0100) × 1010 n cm?2 s?1. The average thermal neutron flux decreases exponentially along the diameter of the designed slant tube from (1.0366 ± 0.0042) × 1011 n cm?2 s?1 to (9.7396 ± 0.0136) × 109 n cm?2 s?1. From the results, it is evident that a slant tube of diameter 15.00 cm can be installed at the original slant tube position for large sample irradiation.  相似文献   

10.
A study of MeV C implantation induced effects on gettering of Au (2.2 × 1015 cm−2), implanted into Si(1 1 1), has been carried out using Rutherford backscattering spectrometry. A 2 h anneal in Ar at 850 °C has been found to result in a gettering efficiency close to 55%. It increases beyond 80% with a further 2 h anneal at 900 °C. The C dose (0.3–1.5 × 1016 cm−2) dependence of Au gettering is also presented and discussed.  相似文献   

11.
Tokamak neutron sources would allow near term applications of fusion such as fusion–fission hybrid reactors, elimination of nuclear wastes, production of radio-isotopes for nuclear medicine, material testing and tritium production. The generation of neutrons with fusion plasmas does not require energetic efficiency; thus, nowadays tokamak technologies would be sufficient for such purposes. This paper presents some key technical details of a compact (~1.8 m3 of plasma) superconducting spherical tokamak neutron source (STNS), which aims to demonstrate the capabilities of such a device for the different possible applications already mentioned. The T-11 transport model was implemented in ASTRA for 1.5 D simulations of heat and particle transport in the STNS core plasma. According to the model predictions, total neutron production rates of the order of ~1015 s?1 and ~1013 s?1 can be achieved with deuterium/tritium and deuterium/deuterium respectively, with 9 MW of heating power, 1.4 T of toroidal magnetic field and 1.5 MA of plasma current. Engineering estimates indicate that such scenario could be maintained during ~20 s and repeated every ~5 min. The viability of most of tokamak neutron source applications could be demonstrated with a few of these cycles and around ~100 cycles would be required in the worst cases.  相似文献   

12.
We examined the relation between the 3.1 eV emission band and local structure for Ge+ implanted silica glass by means of photoluminescence, optical and X-ray absorption spectroscopies. In the 2 × 1015 cm?2 implanted sample, a new emission band around 2.7 eV was observed, the origin of which was assigned to the B oxygen deficient center and/or small Si clusters in silica. When the Ge+ fluence exceeded 2 × 1016 cm?2, a sharp and intense 3.1 eV emission band replaced the 2.7 eV band. We found that the intense 3.1 eV PL occurred by the prolonged X-ray irradiation onto the 2 × 1015 cm?2 implanted sample. UV–vis absorption and XAFS spectroscopies suggested that the aggregation of atomically dispersed tetravalent (Ge(IV)) atoms into Ge(0) clusters of ~1 nm exhibit strongly correlation with the generation of the 3.1 eV PL. Such nano- and/or subnano-size Ge(0) clusters formed by the X-ray radiation were oxidized and decomposed again to the isolated Ge(IV) atoms, while those produced by the higher Ge+ fluence were stable against the exposure to air.  相似文献   

13.
We report the conversion of a 65 nm Si(1 1 1) overlayer of a SIMOX(1 1 1) into 30–45 nm SiC by 40 keV carbon implantation into it. High temperature implantation (600 °C) through a SiO2 cap, 1250 °C post-implantation annealing under Ar ambient (with 1% of O2), and etching are the base for the present synthesis. Sequential C implantations (fluence steps of about 5 × 1016 cm?2), followed by 1250 °C annealing, has allowed to estimate the minimum C fluence to reach the stoichiometric composition as ~2.3 ×  1017 cm?2. Rutherford Backscattering Spectrometry was employed to measure layer composition evolution. A two-sublayers structure is observed in the synthesized SiC, being the superficial one richer in Si. Transmission electron microscopy has shown that a single-step implantation up to the same minimum fluence results in better structural quality. For a much higher C fluence (4 × 1017 cm?2), a whole stoichiometric layer is obtained, with reduction of structural quality.  相似文献   

14.
A study of the effects of Ar ion implantation on the structural transformation of single crystal Si investigated by confocal Raman spectroscopy is presented. Implantation was performed at 77 K using 150 keV Ar++ with fluences ranging from 2 × 1013 to 1 × 1015 ions/cm2. The Raman spectra showed a progression from crystalline to highly disordered structure with increasing fluence. The 520 cm?1 c-Si peak was seen to decrease in intensity, broaden and exhibit spectral shifts indicating an increase in lattice disorder and changes in the residual stress state. In addition, an amorphous Si band first appeared as a shoulder on the 520 cm?1 peak and then shifted to lower wavenumbers as a single broadband peak with a spectral center of 465 cm?1. Additionally, the emergence of the a-Si TA phonon band and the decrease of the c-Si 2TA and 2TO phonon bands also indicated the same structural transition from crystalline to highly disordered. The Raman results were compared to those obtained by channeling RBS.  相似文献   

15.
The aim of the present study is to investigate a method to evaluate the tritium activity in hydraulic oil waste generated during the operation of Romanian Cernavoda Nuclear Power Plant.The method is based on a combustion technique using the 307 PerkinElmer® Sample Oxidizer model.The hydraulic oil samples must be processed prior to counting to avoid color quenching (the largest source of inaccuracy) because these samples absorb in the region of 200–500 nm, where scintillation phosphors emit.Prior to combustion of the hydraulic oil waste, tritium recovery degree and tritium retention degree in the circuits of combustion system were evaluated as higher than 98% and less than 0.08%, respectively.After combustion, tritium activity was measured by a 2100 Tri-Carb® Packard model liquid scintillation analyzer.The blank counts were 16.25 ± 0.50 counts/min, measured for 60 min. The significant activity level value was 6.53 counts/min, at a preselected confidence level of 95%. The Minimum Detectable Activity of a 0.2 mL hydraulic oil sample was calculated to 1.09 Bq/mL. Therefore, the developed method is sensitive enough for the tritium evaluation in the ordinary hydraulic oil waste samples.  相似文献   

16.
《Fusion Engineering and Design》2014,89(9-10):2141-2144
The international community agrees on the importance to build a large facility devoted to test and validate materials to be used in harsh neutron environments. Such a facility, proposed by ENEA, reconsiders a previous study known as “Sorgentina” but takes into account new technological development so far attained. The “New Sorgentina” Fusion Source (NSFS) project is based upon an intense D–T 14 MeV neutron source achievable with T and D ion beams impinging on 2 m radius rotating targets. NSFS produces about 1 × 1013 n cm−2 s−1 over about 50 cm3. Larger volumes of lower neutron flux will be available (e.g. for TBM experiments) as well as collimated channels to study some features of the ITER neutron camera. The NSFS facility will overcome problems related to the ion source and accelerating system, by means of an upgraded version of the JET–PINI ion beams. NSFS has to be intended as an European facility that may be realized in a few years, once provided a preliminary technological program devoted to the operation of the ion source in continuous mode, target heat loading/removal, target and tritium handling, inventory as well as site licensing. In this contribution, the main characteristics of NSFS project will be presented.  相似文献   

17.
Ion implantation induced defects and their consequent electrical impact have been investigated. Unintentionally doped n-type gallium nitride was implanted with 100 keV Si+ and 300 keV Ar+ ions in a fluence range of 1014–1015 ions/cm2. The samples were characterized with Rutherford backscattering/Channeling method for damage buildup. Time of flight elastic recoil detection analysis was implied on the Si implanted samples to see the ion depth distribution. Ar implanted GaN samples were studied electrically with scanning spreading resistance microscopy. Our results show that an Ar fluence of 5 × 1014 cm?2 increases the resistance by five orders of magnitude to a maximum value. For the highest fluence, 6 × 1015 cm?2, the resistivity decreases by two orders of magnitude.  相似文献   

18.
We reconsider an old idea: a three-stage compound cryopump for use in fusion reactors such as DEMO. The helium “ash” is adsorbed on a 4.5 K charcoal-coated surface, while deuterium and tritium are adsorbed at 15–22 K on a second charcoal-coated surface. The helium is released by raising the first surface to ~30 K. In a separate regeneration step, deuterium and tritium are released at ~110 K. In this way, the helium can be pre-separated from other species. In the simplest design, all three stages are in the same vessel, with a single valve to close the pump off from the tokamak during regeneration. In an alternative design, the three stages are in separate vessels, connected by valves, allowing the stages to regenerate without interfering with each other. The inclusion of the intermediate stage would not affect the overall pumping speed significantly.The downstream exhaust processing system could be scaled down, as much of the deuterium and tritium could be returned directly to the reactor. This could reduce the required tritium reserve by almost 90%.We used a well-established free Direct Simulation Monte Carlo (DSMC) code, DS2V. At very high upstream densities (~1020 molecules/m3 and above) the flow into the pump is choked. Enlarging the aperture is the only way to increase the pumping speed at high densities. Ninety percent of the deuterium and tritium is successfully trapped at 15 K (assuming that the sticking coefficient is 80–100% on the 15–22 K surface). On the other hand, the remaining 10% still exceeds the small amount of helium in the gas input.  相似文献   

19.
Coolant water in blankets and divertor cassettes will be activated by neutrons during ITER operation. 16N and 17N are determined to be the most important activation products in the coolant water in terms of their impact on ITER design and performance. In this study, the geometry of cooling channels in blanket module 4 was described precisely in the ITER neutronics model ‘Alite-4’ based on the latest CAD model converted using MCAM developed by FDS Team. The 16N and 17N concentration distribution in the blanket, divertor cassette and their primary heat transport systems were calculated by MCNP with data library FENDL2.1. The activation of cooling pipes induced 17N decay neutrons was analyzed and compared with that induced by fusion neutrons, using FISPACT-2007 with data library EAF-2007. The outlet concentration of blanket and divertor cooling systems was 1.37 × 1010 nuclide/cm3 and 1.05 × 1010 nuclide/cm3 of 16N, 8.93 × 106 nuclide/cm3 and 0.33 × 105 nuclide/cm3 of 17N. The decay gamma-rays from 16N in activated water could be a problem for cryogenic equipments inside the cryostat. Near the cryostat, the activation of pipes from 17N decay neutrons was much lower than that from fusion neutrons.  相似文献   

20.
The Neutral Beam Test Facility (NBTF) to be realized in Padoa will test the Neutral Beam Injection (NBI), one of the Heating and Current Drive Systems foreseen for ITER. The NBI is based on the acceleration of hydrogen or deuterium negative ions up to 1 MeV. This work has been aimed at assessing the tritium release from the NBTF in order to provide data for the safety analysis. In particular, the diffusion of the tritium through the neutral beam target material (the CuCrZr alloy calorimeter panels) has been assessed by using literature data of the diffusion coefficient. The tritium generated inside the calorimeter panels moves into both the vacuum and water side: the tritium diffusion flux has been evaluated during the beam-on (200 °C) and the beam-off (20 °C) phases of the NBTF experiments consisting of an interim campaign and a final test. The penetration depth of the tritium through the 2 mm thick CuCrZr alloy material has been also evaluated by using a Monte-Carlo code. As main result, the assessed diffusion flux of tritium during both the beam-on and the beam-off phases are modest. In fact, at the end of the interim campaign (100 days), about the 96% of the all generated tritium (626.5 MBq) exits the calorimeter while the residual tritium inventory (25 MBq) leaves the copper alloy with a diffusion time of about 1 month. At the end of the final test (14 days) about the 99% of the total generated tritium (1.023 × 104 MBq) leaves the copper alloy and the remaining tritium inventory (152.2 MBq) is released by about 32 days. In both the interim campaign and the final test, more than the 99% of the total tritium is transferred into the vacuum side of the calorimeter panel while negligible tritium amounts enter the cooling water system thus showing a very low impact on the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号