首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
This paper studies regularized discriminant analysis (RDA) in the context of face recognition. We check RDA sensitivity to different photometric preprocessing methods and compare its performance to other classifiers. Our study shows that RDA is better able to extract the relevant discriminatory information from training data than the other classifiers tested, thus obtaining a lower error rate. Moreover, RDA is robust under various lighting conditions while the other classifiers perform badly when no photometric method is applied.  相似文献   

7.
基于脸部和步态特征融合的身份识别   总被引:2,自引:0,他引:2  
提出了一种将脸部和步态特征相结合,应用于智能监控系统进行远距离视频流中身份识别的新方法.该方法首先分别采用隐马尔可夫模型(HMM)和Fisherfaces方法进行步态和脸部的识别,之后将这两个分类器得到的结果进行匹配级的融合.对从不同方向采集的31个人的视频序列进行分析实验,结果表明将脸部和步态特征相结合进行身份识别具有很好的鲁棒性,其识别性能也优于只采用脸部或步态单一特征的识别方法.  相似文献   

8.
9.
Gabor wavelets (GWs) are commonly used for extracting local features for various applications such as object detection, recognition and tracking. However, extracting Gabor features is computationally intensive, so the features are impractical for real-time applications. In this paper, we propose a simplified version of Gabor wavelets (SGWs) and an efficient algorithm for extracting the features based on an integral image. We evaluate the performance of the SGW features for face recognition. Experimental results show that using SGWs can achieve a performance level similar to using GWs, while the runtime for feature extraction using SGWs is, at most, 4.39 times faster than that of GWs implemented by using the fast Fourier transform (FFT).  相似文献   

10.
In this paper, a novel, elastic, shape-texture matching method, namely ESTM, for human face recognition is proposed. In our approach, both the shape and the texture information are used to compare two faces without establishing any precise pixel-wise correspondence. The edge map is used to represent the shape of an image, while the texture information is characterized by both the Gabor representations and the gradient direction of each pixel. Combining these features, a shape-texture Hausdorff distance is devised to compute the similarity of two face images. The elastic matching is robust to small, local distortions of the feature points such as those caused by facial expression variations. In addition, the use of the edge map, Gabor representations and the direction of the image gradient can all alleviate the effect of illumination to a certain extent.With different databases, experimental results show that our algorithm can always achieve a better performance than other face recognition algorithms under different conditions, except when an image is under poor and uneven illumination. Experiments based on the Yale database, AR database, ORL database and YaleB database show that our proposed method can achieve recognition rates of 88.7%, 97.7%, 78.3% and 89.5%, respectively.  相似文献   

11.
This paper develops a novel framework that is capable of dealing with small sample size problem posed to subspace analysis methods for face representation and recognition. In the proposed framework, three aspects are presented. The first is the proposal of an iterative sampling technique. The second is adopting divide-conquer-merge strategy to incorporate the iterative sampling technique and subspace analysis method. The third is that the essence of 2D PCA is further explored. Experiments show that the proposed algorithm outperforms the traditional algorithms.  相似文献   

12.
This paper develops a supervised discriminant technique, called graph embedding discriminant analysis (GEDA), for dimensionality reduction of high-dimensional data in small sample size problems. GEDA can be seen as a linear approximation of a multimanifold-based learning framework in which nonlocal property is taken into account besides the marginal property and local property. GEDA seeks to find a set of perfect projections that not only can impact the samples of intraclass and maximize the margin of interclass, but also can maximize the nonlocal scatter at the same time. This characteristic makes GEDA more intuitive and more powerful than linear discriminant analysis (LDA) and marginal fisher analysis (MFA). The proposed method is applied to face recognition and is examined on the Yale, ORL and AR face image databases. The experimental results show that GEDA consistently outperforms LDA and MFA when the training sample size per class is small.  相似文献   

13.
The selection of kernel function and its parameter influences the performance of kernel learning machine. The difference geometry structure of the empirical feature space is achieved under the different kernel and its parameters. The traditional changing only the kernel parameters method will not change the data distribution in the empirical feature space, which is not feasible to improve the performance of kernel learning. This paper applies kernel optimization to enhance the performance of kernel discriminant analysis and proposes a so-called Kernel Optimization-based Discriminant Analysis (KODA) for face recognition. The procedure of KODA consisted of two steps: optimizing kernel and projecting. KODA automatically adjusts the parameters of kernel according to the input samples and performance on feature extraction is improved for face recognition. Simulations on Yale and ORL face databases are demonstrated the feasibility of enhancing KDA with kernel optimization.  相似文献   

14.
In this paper, a novel subspace method called diagonal principal component analysis (DiaPCA) is proposed for face recognition. In contrast to standard PCA, DiaPCA directly seeks the optimal projective vectors from diagonal face images without image-to-vector transformation. While in contrast to 2DPCA, DiaPCA reserves the correlations between variations of rows and those of columns of images. Experiments show that DiaPCA is much more accurate than both PCA and 2DPCA. Furthermore, it is shown that the accuracy can be further improved by combining DiaPCA with 2DPCA.  相似文献   

15.
We present a new dimensionality reduction method for face recognition, which is called independent component based neighborhood preserving analysis (IC-NPA). In this paper, NPA is firstly proposed which can keep the strong discriminating power of LDA while preserving the intrinsic geometry of the in-class data samples. As NPA depends on the second-order statistical structure between pixels in the face images, it cannot find the important information contained in the high-order relationships among the image pixels. Therefore, we propose IC-NPA method which combines ICA and NPA. In this method, NPA is performed on the reduced ICA subspace which is constructed by the statistically independent components of face images. IC-NPA can fully consider the statistical property of the input feature. Furthermore, it can find an embedding that preserves local information. In this way, IC-NPA shows more discriminating power than the traditional subspace methods when dealing with the variations resulting from changes in lighting, facial expression, and pose. The feasibility of the proposed method has been successfully tested on both frontal and pose-angled face recognition, using two data sets from the FERET database and the CAS-PEAL database, respectively. The experiment results indicate that the IC-NPA shows better performance than the popular method, such as the Eigenface method, the ICA method, the LDA-based method and the Laplacianface method.  相似文献   

16.
Multimedia Tools and Applications - Face recognition on the basis of age variation is a significant yet challenging issue. One among the effective methods to age-invariant face recognition is to...  相似文献   

17.
18.
Hausdorff distance is an efficient measure of the similarity of two point sets. In this paper, we propose a new spatially weighted Hausdorff distance measure for human face recognition. The weighting function used in the Hausdorff distance measure is based on an eigenface, which has a large value at locations of importance facial features and can reflect the face structure more effectively. Two modified Hausdorff distances, namely, “spatially eigen-weighted Hausdorff distance” (SEWHD) and “spatially eigen-weighted ‘doubly’ Hausdorff distance” (SEW2HD) are proposed, which incorporate the information about the location of important facial features such as eyes, mouth, and face contour so that distances at those regions will be emphasized. Experimental results based on a combination of the ORL, MIT, and Yale face databases show that SEW2HD can achieve recognition rates of 83%, 90% and 92% for the first one, the first three and the first five likely matched faces, respectively, while the corresponding recognition rates of SEWHD are 80%, 83% and 88%, respectively.  相似文献   

19.
Paper introduces a 3-D shape representation scheme for automatic face analysis and identification, and demonstrates its invariance to facial expression. The core of this scheme lies on the combination of statistical shape modelling and non-rigid deformation matching. While the former matches 3-D faces with facial expression, the latter provides a low-dimensional feature vector that controls the deformation of model for matching the shape of new input, thereby enabling robust identification of 3-D faces. The proposed scheme is also able to handle the pose variation without large part of missing data. To assist the establishment of dense point correspondences, a modified free-form-deformation based on B-spline warping is applied with the help of extracted landmarks. The hybrid iterative closest point method is introduced for matching the models and new data. The feasibility and effectiveness of the proposed method was investigated using standard publicly available Gavab and BU-3DFE datasets, which contain faces with expression and pose changes. The performance of the system was compared with that of nine benchmark approaches. The experimental results demonstrate that the proposed scheme provides a competitive solution for face recognition.  相似文献   

20.
In this paper, we propose a new kernel discriminant analysis called kernel relevance weighted discriminant analysis (KRWDA) which has several interesting characteristics. First, it can effectively deal with the small sample size problem by using a QR decomposition on scatter matrices. Second, by incorporating a weighting function into discriminant criterion, it overcomes overemphasis on well-separated classes and hence can work under more realistic situations. Finally, using kernel theory, it handle non linearity efficiently. In order to improve performance of the proposed algorithm, we introduce two novel kernel functions and compare them with some commonly used kernels on face recognition field. We have performed multiple face recognition experiments to compare KRWDA with other dimensionality reduction methods showing that KRWDA consistently gives the best results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号