首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 376 毫秒
1.
Not‐ready‐to‐eat breaded chicken products formulated with antimicrobial ingredients were tested for the effect of sample dimensions, surface browning method and final internal sample temperature on inoculated Salmonella populations. Fresh chicken breast meat portions (5 × 5 × 5 cm), inoculated with Salmonella (7‐strain mixture; 5 log CFU/g), were mixed with (5% v/w total moisture enhancement) (i) distilled water (control), (ii) caprylic acid (CAA; 0.0625%) and carvacrol (CAR; 0.075%), (iii) CAA (0.25%) and ε‐polylysine (POL; 0.5%), (iv) CAR (0.15%) and POL (0.5%), or (v) CAA (0.0625%), CAR (0.075%) and POL (0.5%). Sodium chloride (1.2%) and sodium tripolyphosphate (0.3%) were added to all treatments. The mixtures were then ground and formed into 9 × 5 × 3 cm (150 g) or 9 × 2.5 × 2 cm (50 g) portions. The products were breaded, browned in (i) an oven (208 °C, 15 min) or (ii) deep fryer (190 °C, 15 s), packaged, and stored at –20 °C (8 d). Overall, maximum internal temperatures of 62.4 ± 4.0 °C (9 × 2.5 × 2 cm) and 46.0 ± 3.0 °C (9 × 5 × 3 cm) were reached in oven‐browned samples, and 35.0 ± 1.1 °C (9 × 2.5 × 2 cm) and 31.7 ± 2.6 °C (9 × 5 × 3 cm) in fryer‐browned samples. Irrespective of formulation treatment, total (after frozen storage) reductions of Salmonella were greater (P < 0.05) for 9 × 2.5 × 2 cm oven‐browned samples (3.8 to at least 4.6 log CFU/g) than for 9 × 5 × 3 cm oven‐browned samples (0.7 to 2.5 log CFU/g). Product dimensions did not (≥ 0.05) affect Salmonella reductions (0.6 to 2.8 log CFU/g) in fryer‐browned samples. All antimicrobial treatments reduced Salmonella to undetectable levels (<0.3 log CFU/g) in oven‐browned 9 × 2.5 × 2 cm samples. Overall, the data may be useful for the selection of antimicrobials, product dimensions, and surface browning methods for reducing Salmonella contamination.  相似文献   

2.
An electrochemically activated solution (EAS) was evaluated for its antibacterial efficacy against Salmonella typhimurium on chicken carcasses during inside/outside (I/O) birdwasher spraying at 20°C and 413 kPa for 17s and chilling at 4°C for 45 min in a pilot plant. The EAS with 50 ppm of oxidants in terms of free chlorine (CI) in the I/O spray reduced Salmonella on carcasses by 1.39 log10 CFU/carcass, whereas tap water and a 50 ppm (CI) hypochlorite solution reduced Salmonella by 0.86 and 0.87 log10 CFU/carcass, respectively. Further chilling using iced EAS (50 ppm of CI) did not reduce Salmonella on carcasses but eliminated Salmonella in the chiller water.  相似文献   

3.
Selected parameters (cooking loss, instrumental colour and texture and sensory quality) of a brine-injected pork muscle cooked by a novel and rapid ohmic cooking protocol were examined and compared with those obtained in conventionally cooked samples. Ohmic samples were cooked using either a low-temperature long-time (LTLT) protocol (2 min equilibration, 5 min ohmic heating to 70 °C, 8 min holding) or a high-temperature short-time (HTST) procedure (2 min equilibration, 6 min ohmic heating to 95 °C) performed within a hot air cabinet set at 80 °C (LTLT) and 100 °C (HTST). Conventional cooking (steam oven at 80 °C for 120 min) was conducted to a core temperature of 70 °C. The LTLT treatment gave a much lower cooking loss value (4–5% lower, p < 0.05) than the other treatments, though the full magnitude of this difference was not completely reflected in the proximate composition of the cooked products. Ohmically cooked ham showed a significantly (p < 0.05) lighter surface colour with Hunter L values of 65.3 (LTLT) and 63.5 (HTST) relative to the control (61.4). Texture profile analysis (TPA) indicated a significant difference (p < 0.05) in hardness (N) especially between the HTST surface (82.1 N) and the conventional centre (58.8 N). Although the ohmic cooking protocols yielded products with quite acceptable eating qualities, sensory evaluation found the overall quality of the conventionally cooked ham to be significantly (p < 0.05) superior, indicating that further optimisation of the ohmic cooking protocols would be required prior to any commercial adoption.  相似文献   

4.
Waxy, low- and high-amylose rice were cooked at different temperatures (50, 70, 90 °C) for different times (15, 30, 45 min). The microscopic, rheological and gel textural properties of resultant flours were investigated. There was a coarser and discontinuous honeycomb-like structure with formation of pores in rice flour with greater cooking degree. Tmax was positively correlated with cooking temperature and time. As cooking temperature increased, the values of pastes first increased and then decreased, whereas the opposite trend was observed for tan δ. Meanwhile, increased cooking temperature was responsible for increases in n values and caused drops in K and hysteresis area. As cooking time increased, the hardness and gumminess of gels from rice cooked were increased at lower temperature, but were decreased at higher temperature. Overall, cooking temperature was more important in determining the processing properties of rice flours than cooking time.  相似文献   

5.
We evaluated changes in the texture, colour, microstructure and volatile compounds of pork loins after superheated steam (SHS) cooking at 120, 140, 160 or 180 °C for 5, 10, 15 and 20 min. Results showed that the texture changed significantly with heating temperature and time. Hardness increased significantly with increasing temperature above 140 °C. Scanning electron microscopy micrographs showed that cooked pork with SHS had more complete muscle fibre bundle structure than that of pork in HA. The L* value indicating colour was significantly increased during the early period and then decreased, whereas the a* and b* values showed a continuous increase. Ninety-five volatile compounds were identified in cooked pork from SHS by gas chromatography/mass spectrometry with solid-phase microextraction. The amount of volatile compounds increased during cooking and decreased as cooking time increased and was well retained at 140 °C. Considering those variations, samples cooked at 140 °C showed better quality attributes.  相似文献   

6.
Abstract: Pathogens that contaminate the surfaces of food utensils may contribute to the occurrence of foodborne disease outbreaks. We investigated the efficacy of UV treatment combined with dry heat (50 °C) for inhibiting 5 foodborne pathogens (Escherichia coli O157:H7, Salmonella Typhimurium, Pseudomonas aeruginosa, Listeria monocytogenes, and Staphylococcus aureus) on stainless steel and polypropylene surfaces in this study. We inoculated substrates with each of the 5 foodborne pathogens cultured on agar surface and then UV treatment alone or a combination of both UV and dry heat (50 °C) was applied for 30 min, 1 h, 2 h, and 3 h. The initial populations of the 5 pathogens before treatment were 8.02 to 9.18 and 8.73 to 9.16 log10 CFU/coupon on the surfaces of stainless steel and polypropylene coupons, respectively. UV treatments for 3 h significantly inhibited S. Typhimurium, L. monocytogenes, and S. aureus on the stainless steel by 3.06, 2.18, and 2.70 log10 CFU/coupon, and S. aureus on the polypropylene by 3.11 log10 CFU/coupon, respectively. The inhibitory effects of the combined UV and dry heat treatment (50 °C) increased as treatment time increased, yielding significant reductions in all samples treated for 3 h, with the exception of S. aureus on polypropylene. The reduction level of E. coli O157:H7 treated for 3 h on the surface of stainless steel and polypropylene treated was approximately 6.00 log10 CFU/coupon. These results indicate that combined UV and dry heat (50 °C) treatments may be effective for controlling microbial contamination on utensils and cooking equipment surfaces as well as in other related environments.  相似文献   

7.
This study evaluates effect of tumbling time and cooking temperature on cooking rate, cooking loss (CL), colour, water activity and water‐holding capacity of cooked restructured ham rolls. In experiment were investigated three tumbling times (2, 4 and 6 h) at constant temperature (+4 °C) and three cooking temperatures (76, 86 and 96 °C). It was observed that CL decreased (P < 0.01) from 5.41% to 3.22% with tumbling time (2 h vs. 6 h) but increased (P < 0.01) from 2.35% to 7.25% along with cooking temperature (76 °C vs. 96 °C). In contrast, pH value increased (P < 0.01) from 6.18 to 6.24 with tumbling time (2 h vs. 6 h) but decreased (P < 0.01) from 6.22 to 6.17 along with cooking temperature (76 °C vs. 96 °C). In addition, high temperature had higher efficiency for thermal lethality than low temperature (F0 values were 19 and 92 min at 96 and 76 °C, respectively). Intermediate tumbling (4 h) and cooking (86 °C) could be preferential.  相似文献   

8.
Many factors, such as fat content and pH, are known to affect thermal inactivation of pathogens in meat products, and a few studies have suggested that the humidity of the cooking environment also affects thermal inactivation. However, the effect of process humidity has not been previously isolated from the effect of water activity on Salmonella inactivation. Therefore, the objective of this study was to directly test the effect of meat water activity on thermal inactivation of Salmonella. Ground turkey was dried to achieve water activities of 0.95 to 0.99, inoculated with an 8‐strain Salmonella cocktail, and heated isothermally (60 °C) in a water bath. The rate of thermal inactivation of Salmonella decreased 64% (P < 0.01) when decreasing meat water activity from 0.99 to 0.95. Inclusion of water activity improved the accuracy of a 1st‐order/Arrhenius‐type inactivation model from 1.94 log10 to 0.8 log10 (colony‐forming units [CFU]/g).  相似文献   

9.
ABSTRACT: Salmonella-contaminated poultry products are considered major contributors to foodborne illness. The anti-Salmonella activity of organic acid salts has been studied in food products and poultry feed but rarely in combination with nonchemical treatments. Here, we investigated the combination of acidified organic acid salt solutions with thermal treatment as an effective Salmonella intervention applicable in poultry carcass processing. A model raw chicken media was used to propagate Salmonella prior to the intervention treatment. Salmonella Typhimurium strains LT2 and ATCC nr 14028 grew similarly in the model raw chicken media at 37 and 42 °C, reaching stationary phase 24 h after inoculation. Four log10CFU of either Salmonella Typhimurium strain at stationary phase was exposed to 2.5% organic acid salt solutions (at pH 4) for 1 min at 55 °C. All organic acid salt treatments yielded significant Salmonella Typhimurium reductions, ranging from 1 log (sodium acetate) to almost 4 logs (sodium butyrate). Exposure to pH 4 water at 55 °C or the organic acid salt solutions at room temperature had no effect. The combined thermal and acidified organic acid salt intervention produced a significant, synergistic reduction of Salmonella Typhimurium and may represent an effective method for decontamination of poultry carcasses during processing.  相似文献   

10.
《Food microbiology》2005,22(1):47-52
Chicken leg quarters (180–230 g) were processed for 4 min in steam at 99°C and then in an air impingement oven for 24 min at an oven temperature of 232°C, an air velocity of 2 m/s, and a humidity of 60%. The cooked chicken leg quarters were sampled to measure for the end-point internal temperatures. Sampling size in each subgroup for the internal temperature measurements was determined based on a normal distribution at a confidence level of 95%. The process mean, range, and standard deviation at 95% confidence level were 73.9°C, 1.8°C, and 0.9°C, respectively, for the internal temperatures of the cooked chicken leg quarters. The process lethality was validated for up to 7  log10 cfu/g reductions of Listeria monocytogenes in the cooked chicken leg quarters and verified by an inoculation study in which the chicken leg quarters were injected with 0.1 ml of the culture per cm2 of the product surface area to contain 7–8 log10 cfu/g of L. monocytogenes. This paper provided an approach for process control, sampling, and validation to reduce pathogens in fully cooked poultry products.  相似文献   

11.
Shepody potatoes were cooked using three common cooking methods – microwaving, boiling and pressure cooking. Microwaving for 2.5 min retained the highest amounts of slowly digestible starch (SDS, 19.6%) and resistant starch (RS, 48.8%) as compared to the other cooking treatments. Similarly, enthalpy and FTIR results (ratio of 1047/1022 cm?1) were also higher for microwaved samples, again indicating incomplete gelatinisation. Potatoes were also boiled for 15, 30 or 45 min, followed by 1, 3 or 7 days retrogradation at 23 or 4 °C. Retrogradation enthalpy increased significantly (P ≤ 0.05) with increased storage time and decreased storage temperature; FTIR results displayed temperature dependency; at 4 °C, ordered structure increased with increasing storage time, whereas the opposite trend was seen at 23 °C. Lastly, formation of SDS and RS was favoured for longer boiling times (30 – 45 min), extended storage times (3–7 days) and 4 °C.  相似文献   

12.
The efficiency of food preservation systems is determined by the technologies that are combined, the intrinsic properties of the food products and the target microorganisms. In the present study, the bacteriocins nisin, enterocins A and B and sakacin K were applied to cooked and dry cured ham spiked with Listeria monocytogenes, Salmonella enterica and Staphylococcus aureus and submitted to a high pressure treatment of 600 MPa. Before pressurization nisin produced significant reductions to the counts of L. monocytogenes and S. aureus, especially in dry cured ham. After the pressurization, Salmonella and L. monocytogenes were not detected in 25 g of both cooked and dry cured ham and remained at this level during the entire storage (57 days at 4 °C + 63 days at 15 °C). S. aureus levels, in contrast, only decreased below the detection limit (1 log CFU/g) in the nisin batches. Afterward, when storage was performed at an abusive temperature, the ability of S. aureus to grow was dependant on the bacteriocin applied and the kind of meat product. Thus, at the end of storage, while S. aureus counts were <1 log CFU/g in all dry cured ham batches, only nisin could inhibit its growth in cooked ham.  相似文献   

13.
The commercial potential of high pressure and thermal processing (HPTP) was investigated against Alicyclobacillus acidoterrestris spores in commercial acidic apple juice beverage and in acidified and neutral potassium buffers. With starting spore counts prior to treatments being 6.5 and 7.2 log10 respectively for strains AJA 66 (D90°C 15.4 min) and ATCC 49025 (D90°C 8.5 min), HPTP at 600 MPa at 80 °C for 3 min provided an optimal treatment with spore viability reduced below the detection limit for both strains. HPTP at 80 °C for 1 min and HPTP at 70 °C for 3 min achieved 4.1–4.5 log10 CFU/mL reduction. HPTP at 70 °C for 1 min reduced the number of viable spores by 2.0–2.5-log10 CFU/mL. Flow cytometry revealed the presence of membrane-compromised spores among culturable spores following HPTP and heat alone treatments at different temperatures. Electron microscopy clearly showed the efficiency of HPTP with crushed or hollow spores predominating after treatments. No correlation between HPTP susceptibility and genetic diversity was observed for two genotypes of A. acidoterrestris spores. The treatment combination provides a promising option for industrial utility since it requires lower heat and processing time.  相似文献   

14.
The effect of combining vacuum cooling with an ozone-based inhibition process (InhVac) on Clostridium perfringens spore germination and outgrowth in cooked pork meat after exponential chilling (from 54.4 to 7.2 °C in 12, 15, 18, or 21 h) and isothermal storage (20, 25, 30, 36, or 45 °C) was evaluated. Ice cooling (IC) and vacuum cooling (VC) were used to compare the effects with InhVac. The samples were inoculated with a three-strain mixture of C. perfringens spores to obtain concentration of ca. 3 log10 CFU/g. C. perfringens growth in samples treated by InhVac were 0.1, 0.37 and 0.9 log10 CFU/g after 15, 18 and 21 h of cooling from 54.4 to 7.2 °C respectively, significantly lower (P<0.05) than those in samples subjected to IC (1.01, 2.10 and 2.8 log10 CFU/g) and VC (0.56, 1.01 and 2.13 log10 CFU/g). Compared to VC and IC, InhVac treatment increased the lag phase (λ), decreased the growth rates (μmax), and extended the sample shelf-life (the time until a 1 log10 CFU/g increase in C. perfringes from the initial concentration value) at all storage temperatures. InhVac-treated samples not only had a longer shelf-life than those treated by VC, but also exhibited almost two times longer shelf-life compared to those subjected to IC regardless of storage temperatures. Additionally, statistical indexes showed that a primary modified Gompertz model and a secondary Square Root model could fit the data well.Industrial relevanceIn this study, an innovative inhibition approach (InhVac) was found to show a better antimicrobial effect on C. perfringens germination and outgrowth in cooked pork meat compared to ice cooling and vacuum cooling under temperature-abuse conditions. A primary modified Gompertz model and a secondary Square Root model could be used to predict the C. perfringens growth in samples subjected to InhVac treatment.  相似文献   

15.
Salmonella spp. and Escherichia coli are well tolerant of freezing. This study was to investigate survival of the foodborne pathogens during storage at −18 ± 2°C for 12 weeks on blueberries after washing with: 500 ppm acetic acid plus 5,000 ppm sodium dodecyl sulfate (SDS) (AA/SDS), 20 ppm peroxyacetic acid plus 5,000 ppm SDS (PPA/SDS), or 200 ppm hydrogen peroxide plus 5,000 ppm SDS (H2O2/SDS), when compared with findings from no wash, or wash with water, 80 ppm PPA or 200 ppm chlorinated water. Following a 60 s contact with one of the three new solutions, the treatments showed 3.3–3.9 log10 CFU/g reductions in Salmonella Typhimurium and E. coli O157:H7 counts. After 2 weeks of frozen storage, 3.9–4.2 log10 CFU/g reductions of Salmonella and E. coli were observed. After 12 weeks of frozen storage, Salmonella and E. coli survivors were below detection limits (0.39 log10 CFU/g) in berries washed with new solutions. The frozen storage had a significant impact (p < .05) on microbial counts of both treated and nontreated blueberries. Although none of these washings decreased the total phenolic and anthocyanins contents and apparent quality at time 0, frozen storage caused significant damage on the texture of both treated and nontreated blueberries. Interestingly, no significant decrease in the total phenolic, anthocyanins content, and apparent quality was observed during the 12-week frozen storage. The counts of total bacteria, yeasts, and molds decreased throughout storage for treated and untreated berries. This demonstrates that the three wash solutions enhance the safety of frozen berries.  相似文献   

16.
Almonds are blanched by exposure to hot water or steam-injected water to remove the pellicle (skin) from the kernel. This study evaluated the survival of Salmonella Enteritidis PT 30, Salmonella Senftenberg 775W and Enterococcus faecalis on whole raw almond kernels exposed to hot water. Whole, inoculated (7 to 9 log CFU/g) Nonpareil almonds (40 g) were submerged in 25 L of water maintained at 60, 70, 80 and 88 °C. Almonds were heated for up to 12 min, drained for 2 s, and transferred to 80 mL of cold (4 °C) tryptic soy broth. Almonds in broth were stomached at high speed for 2 min, serially diluted, plated onto tryptic soy and bismuth sulfite agars (Salmonella) or bile esculin agar (Enterococcus) and incubated at 37 °C for 24 and 48 h, respectively. D values of 2.6, 1.2, 0.75 and 0.39 min were calculated for exposure of S. Enteritidis PT 30 to water at 60, 70, 80 and 88 °C, respectively; the calculated z value was 35 C°. D values determined for Salmonella Senftenberg 775W and E. faecalis at 88 °C were 0.37 and 0.36 min, respectively. Neither Salmonella serovar could be recovered by enrichment of 1-g samples after almonds inoculated at 5 log CFU/g were heated at 88 °C for 2 min. These data will be useful to validate almond industry blanching processes.  相似文献   

17.
Changes of meat shear force and its characteristics during cooking have been extensively studied, but great variability existed due to the cooking method among different studies. This study was designed to focus on the dynamic changes of beef intramuscular connective tissue (IMCT) and muscle fiber during water-bath heating and their effects on beef shear force. At 4 d postmortem, beef semitendinosus muscles were divided into 11 steaks and then cooked respectively to an internal temperature of 40, 50, 55, 60, 65, 70, 75, 80, 85, and 90°C (the remainder was not cooked as control). Collagen content and its solubility, transition temperature of perimysia and endomysia, fiber diameter, and Warner–Bratzler shear force values (WBSF) were determined. The results showed that fiber diameter decreased gradually during cooking, concomitant with the increases in filtering residue and WBSF. The maximum transition temperature (T max) of endomysial components was lower than that of perimysial components (50.2 vs. 65.2°C). Muscle fiber and IMCT (especially perimysia) shrank during cooking, resulting in the increase of WBSF when the internal temperature was lower than 75°C, but further cooking led to the disintegration of perimysial structure, lowing up the increase of WBSF between 75 and 90°C. For beef semitendinosus muscle, the internal temperature of 65°C is a critical cooking point where meat gets tougher.  相似文献   

18.
Growth or survival of Listeria monocytogenes in cold‐smoked salmon; sliced, cooked ham; sliced, roasted turkey; shrimp salad; and coleslaw obtained at retail supermarkets stored at 5 °C, 7 °C, or 10 °C (41 °F, 45 °F, or 50 °F, respectively) for up to 14 d was evaluated. Cold‐smoked salmon, ham, and turkey were obtained in case‐ready, vacuum packages. All food products were stored aerobically to reflect additional handling within the retail supermarket. Cold‐smoked salmon, ham, and turkey supported the growth of L. monocytogenes at all 3 storage temperatures. Fitted growth curves of initial populations (about 3 log10 colony‐forming units [CFU]/g) in cold‐smoked salmon, ham, and turkey stored at 5 °C achieved maximal growth rates of 0.29, 0.45, and 0.42 log10 CFU/g growth per day, respectively. Storage at 10 °C increased the estimated maximal growth rate of the pathogen by 0.56 to 1.08 log10 CFU/ g growth per day compared with storage at 5 °C. A decline in populations of L. monocytogenes was observed in shrimp salad and coleslaw, and the rate of decline was influenced by storage temperature. Retention of viability was higher in shrimp salad than in coleslaw, where populations fell 1.2, 1.8, and 2.5 log10 CFU/g at 5 °C, 7 °C, and 10 °C, respectively, after 14 d of storage. Inability of shrimp salad and coleslaw to support the growth of L. monocytogenes may be attributed to the acidic pH (4.8 and 4.5, respectively) of the formulations used in this study. Results show that the behavior of L. monocytogenes in potentially hazardous ready‐to‐eat foods is dependent upon the composition of individual food products as well as storage temperature.  相似文献   

19.
The present study was conducted to elucidate whether cooking impairs the positive effect of pulsed electric field (PEF) on the digestibility of venison during in vitro gastrointestinal protein digestion. Previous studies have used fresh uncooked meat to demonstrate the effect of PEF on protein digestibility during gastrointestinal digestion neglecting the effect that cooking could induce during meat preparation process. PEF-treated samples (T1, 10 kV, 90 Hz, 20 µs) were cooked (core temperature of 75 °C) and subjected to in vitro simulated gastrointestinal protein digestion along with non-treated controls. A 3% increase of in vitro protein digestibility was found in cooked PEF-treated venison (P < 0.05). A positive (P < 0.05) impact of PEF processing was observed on overall protein digestion as measured by soluble protein (%) and SDS-PAGE. PEF did not change (P > 0.05) the release of minerals from cooked venison during digestion. Cooking had no negative influence on the mechanism through which PEF operates in improving the protein digestibility of venison.  相似文献   

20.
We examined the effects of three different temperatures (60, 85 and 100 °C) and durations of time (1 min at 100  ° C to 30 min at 60  ° C) on hepatitis A virus (HAV) in suspension and dried mussels (Mytilus edulis). In suspension, 3.61, 4.48, 5.06 and 5.66 log10 tissue culture infectious dose (TCID)50/mL were reduced by 60  ° C for 5 min, 60  ° C for 15 min, 60  ° C for 30 min and 85  ° C for 3 min, respectively. In dried mussels, 1.34, 1.94, 3.16, 2.36, 3.53 and 4.38 log10TCID50/mL were reduced by 60  ° C for 5 min, 60  ° C for 15 min, 60  ° C for 30 min, 85  ° C for 3 min, 85  ° C for 6 min and 85  ° C for 10 min, respectively. HAV inactivation from suspension and dried mussels was achieved by 85  ° C for 6 min and 15 min, respectively, and also by a 1 min at 100  ° C. At 60, 85 and 100  ° C, the 1‐log (D‐values) inactivation from both suspension and dried mussels was 6.33 and 7.93, 0.98 and 3.05, and 0.28 and 0.38 min, respectively. A higher temperature and/or a thermal treatment time shorter than 85  ° C for 6 min (100  ° C for 1 min) could be used for commercial target foods for complete HAV inactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号