首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
微生物燃料电池是利用电化学技术将微生物代谢产生的能量转化为电能并同时降解环境污染物的一种理想发电装置。总结了国内外研究不多的利用半导体材料的阴极将光能引入到微生物燃料电池体系的研究,重点对其光催化微生物燃料电池的机理、光电协同产电的技术特点、目前在污染物去除方面的应用进行总结,对其发展的方向及在废水处理方面的应用进行展望。  相似文献   

2.
微生物生物电化学系统通过电能和化学能的相互转化,实现发电、制氢、化学合成、废水处理、海水淡化和修复。基于高导电性、稳定性和生物相容性等要求,微生物燃料电池新型电极材料不仅应具有较大的比表面积和开放式多孔结构,还要有利于细胞外电子转移的亲和表面。本文综述了微生物燃料电池电极材料的研究开发进展,重点讨论了新型三维电极材料的设计制造与微生物活性、产电性能的优化。  相似文献   

3.
微生物燃料电池技术目前取得了突破性的进展,并迅速成为废水处理的热点.本文介绍了微生物燃料电池的工作原理和特点,结合微生物燃料电池的发展,对其结构、运行条件,产电微生物及提高电池产电性能作了综述,探讨了提高微生物燃料电池性能的关键问题,并展望其应用前景.  相似文献   

4.
从微生物燃料电池单独及与其他工艺结合等方面,综述了微生物燃料电池同步处理印染废水与产电性能的研究进展,并分析评价了该技术的优势,即在有效脱色并降解复杂污染物的同时可回收电能,当与其他工艺结合时,效果更加。最后展望了微生物燃料电池在印染废水处理中的应用前景。  相似文献   

5.
研究微生物燃料电池在几种不同阴极液和曝气条件下处理餐饮废水及同步发电的性能。分别对以NaCl、K_3[Fe(CN)_6]和Na Cl+K_3[Fe(CN)_6]三种溶液为阴极液的微生物燃料电池进行了实验运行,对比分析了其产电性能和净水效果;对阴极室曝气和自然复氧两种条件下微生物燃料电池整体性能进行了对比研究。实验结果表明,阴极液和曝气条件的变化会影响微生物燃料电池的发电性能和净水效果。在以NaCl+K_3[Fe(CN)_6]混合液为阴极液且阴极室曝气的条件下,以餐饮废水为底物的微生物燃料电池的废水处理效果和产电能力最佳,相应的食堂原废水的产电电流密度稳态值为8.7m A·m~(-2),COD去除率为46.2%;模拟废水的产电电流密度稳态值为6.84 mA·m~(-2),COD去除率为33.1%。选择合适的阴极液和曝气状态,微生物燃料电池可有效处理餐饮废水并取得良好的发电性能。  相似文献   

6.
介绍了碳纳米管、石墨烯及二氧化钛等新型复合纳米材料的特性和结构,简述了新型复合纳米材料部分制备方法。通过分析不同材料作为微生物燃料电池电极的性能,对未来微生物燃料电池电极材料提出展望。认为微生物燃料电池是一种新兴的废水处理与产电技术,完善电极材料的设计及制备是提高其性能最有效的方法之一。指出新兴复合纳米材料在微生物燃料电池中的方向应更具有针对性的水质,今后的发展方向和研究重点是微生物燃料电池的规模化、复合纳米材料的经济性、稳定性以及生物相容性等。  相似文献   

7.
微生物燃料电池的研究应用进展   总被引:2,自引:0,他引:2  
微生物燃料电池是利用微生物作为催化剂,氧化分解生物质同时输出电能的一种新装置,因其可将生物质中化学能直接转化为电能,可获得更高的能量转化效率,是未来缓解能源和环境问题的有效途径,引起了科研工作者的广泛关注。本文结合近几年微生物燃料电池的发展,综述了产电微生物种类、电池材料及其改性、反应器的放大以及微生物燃料电池应用方面的研究进展,分析了该领域未来发展的主要方向及面临的问题,指出筛选和诱导产电菌对不同有机底物的耐受性,开发高效价廉的电极材料以及构建易于放大的电池模式,是微生物燃料电池未来研究的重点。在此基础上,应该着重于反应器放大,深入研究其在废水处理、产氢、微生物电化学合成以及传感器方面的应用,确定其实际应用的相关参数和模型,为微生物燃料电池早日实际应用打下坚实基础。  相似文献   

8.
杨倩  徐源  蒋阳月  陈英文  祝社民  沈树宝 《化工进展》2013,32(10):2423-2428
微生物燃料电池(microbial fuel cell,MFC),是一种同步废水处理与产能的新技术——以微生物为催化剂降解废水中的有机物,将其中的化学能转化为电能。本文介绍了微生物燃料电池阳极和阴极材料以及电极催化剂的最新研究进展,讨论了提高微生物燃料电池性能的方法,即通过使用纳米材料修饰电极来提高微生物及催化剂的吸附面积、结合不同材料的优点制作复合材料做催化剂来克服单一材料的不足之处,以期研究和开发出高性能的微生物燃料电池;指出微生物燃料电池的应用前景是将微生物燃料电池与其它技术相耦合来提前实现它的实际应用。  相似文献   

9.
微生物燃料电池研究和应用方面的最新进展   总被引:4,自引:0,他引:4  
微生物燃料电池是一种利用微生物的催化作用将化学能转变为电能的生物装置。微生物燃料电池在作为可替代性能源、新颖的污水处理方法以及氧和污染物的生物传感器等方面具有较大的潜能,但仍需进一步优化。本文确定了限制微生物燃料电池应用操作的几种因素,并在其性能提高方面进行了探讨。  相似文献   

10.
厌氧流化床微生物燃料电池采用液固流化床耦合微生物燃料电池技术,使流体与微生物载体颗粒充分混合,可显著提高相间传质效率,进而提升废水处理及电池产电效率.综述了厌氧流化床微生物燃料电池的工作原理及优缺点,分析了温度、pH值、外阻、电极、驯化方式、内阻、基质流速等因素对电池产电性能的影响,介绍了电池的应用前景,并对其未来主要...  相似文献   

11.
P. Kaewkannetra  W. Chiwes  T.Y. Chiu 《Fuel》2011,90(8):2746-2750
Cassava mill wastewater has a high organic content and is an important economic product of traditional and rural low technology agro-industry in many parts of the world. This study explores the utilization of agro-industrial wastewater collected from cassava mills as a resource for electricity generation by microbial fuel cells (MFCs). Mixed culture sludge was used to inoculate the bottom chamber of the MFCs whilst cassava mill wastewater was used in the MFCs. Experimental results showed that the MFCs could generate electricity from full-strength cyanide laden wastewater (16000 mg-COD/L, 86 mg/L cyanide) with a maximum power density of 1771 mW/m2. The results from this study demonstrate the feasibility of using MFC technology to generate electricity whilst simultaneously treating cyanide laden cassava mill wastewater effectively. Using MFCs for cassava mill wastewater treatment provides an attractive way to reduce the cost of wastewater treatment in addition to generating electricity.  相似文献   

12.
微生物燃料电池(MFCs)的启动及产电性能直接影响其应用于对实际废水的处理。以屠宰厂废水为基质研究了循环伏安扫描对单室空气阴极微生物燃料电池启动和产电性能的影响。结果表明:经过24 h CV扫描的MFCs其启动时间比常规电阻(1000 Ω)直接启动的MFCs缩短了71.4%(从420 h缩短至120 h),MFCs最大功率密度提高了21.5%,达到37.8 W·m-3。通过电极生物量测定和生物膜表面形貌观察发现,经CV扫描的阳极生物量显著提高且生物膜的产电菌占优势是MFCs性能提高的主要原因。说明CV扫描不断促进产电菌在阳极表面的吸附,而且增加产电微生物的生长速度。这一技术为发展MFCs的快速启动和提升MFCs的产电性能提供了新思路。  相似文献   

13.
Bioenergy is a renewable energy that plays an indispensable role in meeting today's ever increasing energy needs. Unlike biofuels, microbial fuel cells (MFCs) convert energy harvested from redox reactions directly into bioelectricity. MFCs can utilize low‐grade organic carbons (fuels) in waste streams. The oxidation of the fuel molecules requires biofilm catalysis. In recent years, MFCs have also been used in the electrolysis mode to produce bioproducts in laboratory tests. MFCs research has intensified in the past decade and the maximum MFCs power density output has been increased greatly and many types of waste streams have been tested. However, new breakthroughs are needed for MFCs to be practical in wastewater treatment and power generation beyond powering small sensor devices. To reduce capital and operational costs, simple and robust membrane‐less MFCs reactors are desired, but these reactors require highly efficient biofilms. Newly discovered conductive cell aggregates, improved electron transport through hyperpilation via mutation or genetic recombination and other advances in biofilm engineering present opportunities. This review is an update on the recent advances on MFCs designs and operations. © 2012 Society of Chemical Industry  相似文献   

14.
OVERVIEW: Microbial fuel cells (MFCs) are an emerging technology which directly converts chemical energy stored in organic matter to electricity. Driven by the increasing concern over the energy–climate crisis and environment pollution, MFCs have been developed rapidly in the past decade. Currently, MFCs are making the challenging step from laboratory to practical application. This paper focuses on MFC patents and the applications of MFCs. IMPACT: MFCs make it possible to directly exploit bio‐electricity from organic wastes with a higher energy transforming efficiency than other traditional technologies. The wide application of MFCs will significantly reduce the energy dependence on fossil fuel as well as the relative problems of climate and environmental pollution. APPLICATIONS: MFCs have been deployed in various practical environments, such as wastewater treatment plants, seafloor, etc. The electricity generated by MFCs has been used to charge low power devices. More applications have been funded or are to be undertaken. The successful pilot applications of MFCs promise a bright future for this technology. Copyright © 2011 Society of Chemical Industry  相似文献   

15.
Although modeling is regarded as a useful tool to understand the performance of microbial fuel cells (MFCs), the number of MFC models remains very low compared with the number of experimental works available in the literature. Moreover, there are very few MFC modeling attempts dealing with the use of wastewater as fuel in these devices, which is essential for the practical implementation of MFCs since the potential of this technology lies in the two-fold benefit of wastewater treatment and bioenergy generation. In this work, a four-factor three-level Box–Behnken design was developed to model the electrochemical power generation in two-chamber MFCs using wastewater as fuel. The optimum values of temperature, external resistance, feed concentration and anodic pH that maximized power output were investigated. Optimum conditions were found at T = 35°C and R = 1 kΩ, corresponding to a maximum power density of 0.88 W·m?3, while feed concentration and pH did not show statistical significance in the ranges studied. Thus, a Box–Behnken design-based model as empirical approach could provide an effective tool for the optimization study of MFC systems.  相似文献   

16.
BACKGROUND: Coking wastewater is generated from coal coking, coal gas purification, and by‐product recovery processes. Increased interest is being focused on finding more sustainably effective and energy‐efficient methods for treating this wastewater. In this work, a system termed microbial fuel cell‐electro‐oxidation (MFC‐EO) was developed for simultaneous coking wastewater treatment and bioelectricity generation. RESULTS: Raw coking wastewater was first treated using MFCs. Power production, removal of total chemical oxygen demand (TCOD) and total nitrogen (TN) reached 538 ± 9 mW m?2, 52 ± 1% and 50 ± 1%, respectively. Wastewater strength and phosphate addition were evaluated for the enhancement of power production and treatment efficiency. At the EO stage, the effect of current density and chloride concentration on pollutant abatement, current efficiency (CEEO) and energy consumption (ECEO) were investigated. The overall removal of TCOD and TN was 82 ± 1% and 68 ± 1%, respectively using the MFC‐EO process. CONCLUSIONS: A MFC‐EO process was developed for the first time for simultaneous bioelectricity generation and coking wastewater treatment. This study attempted to combine MFCs with a conventional EO process for coking wastewater treatment. Further strategies need to be investigated to optimize reactor configuration using low‐cost and highly efficient electrode materials. Copyright © 2009 Society of Chemical Industry  相似文献   

17.
石锐  庞恬婷  聂扬  李倩  李娜  赵宏 《广州化工》2014,(22):11-13
微生物燃料电池( MFC)中阳极处理生活污水,阴极处理工业废水中的金属离子成为近年来研究重点之一。本文综合了近年来的MFC应用微生物阳极与非生物或微生物阴极有机结合处理含重金属离子的工业废水的研究进展,重点讨论了Cu(Ⅱ)、 Cr( VI)、 Ag(Ⅰ)、 Hg(Ⅱ)、 Fe(Ⅲ)、 Mn(Ⅵ)、 U(Ⅳ)等离子的处理,并就MFC阴极处理金属离子的现状及应用前景进行了分析和讨论。  相似文献   

18.
BACKGROUND: The conventional treatment of molasses wastewater has many disadvantages including intensive energy requirements, excessive chemicals consumption and large quantities of waste generation. The microbial fuel cell (MFC) is a promising technology for power generation along with wastewater treatment. However, low power output and high construction costs limit the scale‐up and field implementation of MFCs. In this study, a novel anaerobic baffled stacking microbial fuel cell (ABSMFC) composed of four units was constructed and used to treat molasses wastewater. RESULTS: The ABSMFC was operated at three different organic loading rates (OLRs) and the highest average power density of 115.5 ± 2.7 mW m?2 was achieved for the four units at an OLR of 3.20 kg COD m?3 d?1. Accordingly, 50–70% of total COD removal efficiency was accomplished. Power generation was further improved in terms of voltage or current by connecting units in series or parallel. The low voltage loss (8.1%) during series connection resulted from low parasitic current of adjacent units. CONCLUSION: The ABSMFC is effective for molasses wastewater treatment. It can promote current or voltage output and minimize energy loss during series connection. This is a promising scalable architecture and can be combined with other existing wastewater treatment technologies. Copyright © 2010 Society of Chemical Industry  相似文献   

19.
微生物燃料电池(microbial fuel cells,MFCs)是一种利用产电微生物将化学能直接转化为电能的技术,其在运行期间不消耗外界能量且无二次污染,日益得到人们的广泛关注。土壤因富含有机质和庞大的微生物种群,是产电微生物的“天然培养基”。近几年来,以土壤为基质的MFCs在产电、土壤污染评价和修复等方面展现了较大的研究潜能和应用前景。本文全面介绍了目前MFCs在土壤产电、有机污染物降解、重金属污染治理、温室气体减排以及生物传感器等方面的应用研究;总结了目前土壤MFCs研究中应用的反应器构型、电极和产电微生物种群;在此基础上提出了以土壤为基质的MFCs在研究及应用过程中存在的主要问题,并对其研究前景进行展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号