首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
添加Al2O3和SiO2的大晶粒UO2芯块制备研究   总被引:2,自引:0,他引:2  
研究了Al2O3和SiO2添加剂对UO2芯块晶粒尺寸的影响.结果表明:加入少量的Al2O3和SiO2,可有效促进烧结过程中UO2芯块的晶粒度长大,过量加入则会阻碍烧结过程中UO2芯块的致密化;在添加量一定的情况下,添加不同比例的Al2O3和SiO2,对芯块晶粒尺寸有较大影响,只添加SiO2,对芯块晶粒尺寸影响不大,Al2O3添加量增加,芯块晶粒尺寸随之增加;添加Al2O3和SiO2促进UO2芯块晶粒长大的机制是在烧结期间发生了液相烧结.  相似文献   

2.
介绍了添加微量元素制备大晶粒UO2芯块的研究情况。添加的三种微量元素是:普通级Al2O3/SiO2、纳米级Al2O3/SiO2和Cr2O3。得出了阶段性的结论:添加这三种微量元素均促进UO2芯块晶粒的增加。控制适当的添加量,其性能完全满足现有的技术条件。  相似文献   

3.
对Er2O3质量分数为4.32%的UO2-Er2O3可燃毒物燃料芯块的制备技术进行了初步研究。通过对比不同工艺条件(混料、成型、烧结)下,芯块的外观完整度、密度、晶粒度等性能,初步得到了UO2-Er2O3燃料芯块的制备技术。试验表明:干法球磨混合6?h,添加5‰的聚乙烯醇(PVA),300~350?MPa压力下冷压成型,1700~1750℃、H2气氛中烧结2~3?h,可得到外观完整、密度大于等于95%理论密度(T.D.)、晶粒尺寸大于8?μm的UO2?-Er2O3燃料芯块。   相似文献   

4.
本工作涉及大晶粒UO2燃料芯块的研究、试验燃料组件的设计与制造。所谓大晶粒是在UO2粉末中分别添加Al2O3/SiO2、Cr2O3粉末,烧结后形成了大晶粒UO2燃料芯块,它能有效降低裂变气体释放、减少燃料棒内压、减少芯块和包壳的PCI作用,  相似文献   

5.
为了开发高性能的压水堆燃料,研制了大晶粒燃料芯块。试验燃料芯块具有高的235U富集度、小直径和大晶粒尺寸的特点。通过堆内辐照试验可以对不同制造工艺的燃料芯块进行评价和筛选,以便确定燃料制造工艺。为了在中国原子能科学研究院池式研究堆中随堆考验,设计了一种试验组件,包含四根双包壳的燃料棒。双包壳燃料棒是在外包壳内装入两根单包壳燃料棒。试验组件直接由反应堆一次循环水冷却,不设专门的冷却回路。试验组件上安装了多种堆芯测量传感器,包括燃料中心温度热电偶、自给能中子探测器和冷却剂出、入口温度热电偶,可以在线监测燃料试验参数。描述了大晶粒UO2燃料芯块的研制、试验燃料组件的研制和检验。  相似文献   

6.
《核动力工程》2017,(6):125-128
对UO_2-Er_2O_3可燃毒物燃料芯块的烧结工艺进行研究。试验表明:烧结过程中选择生坯密度在55%~60%理论密度的生坯芯块,在1700~1750℃,H2气氛中烧结2~3 h,可得到完整度、密度、晶粒尺寸等性能满足要求的燃料芯块。  相似文献   

7.
提高燃料燃耗的一个有效手段是通过增大UO2晶粒尺寸来减少元件内部气体压力,在大晶粒UO2芯块中,裂变气体到达晶界表面的距离增加,因而裂变气体的释放速率降低,元件内部气体压力的增高缓慢。本文研究了添加Cr2O3对UO2晶粒尺寸的影响。对纯UO2、添加0.5% Cr2O3及5% Cr2O3 3种配方的芯块进行了试验,在5%H2Ar保护下,以10 ℃/min和5 ℃/min的升温速率升温至1 700 ℃,然后烧结2 h或4 h,对比纯UO2芯块与添加Cr2O3的芯块发现,添加Cr2O3可有效增大晶粒尺寸;较长的烧结时间可促进晶粒长大;较低的升温速率也使晶粒长大。烧结过程产生液相烧结,液相浸润晶粒边界,促进晶粒长大。  相似文献   

8.
用光学显微镜和图象分析仪研究了影响Gd2O3-UO2芯块晶粒尺寸的因素。对烧结气氛、混料方式、芯块在烧结炉中的位置、以及在UO2芯块中添加U3O8、草酸铵和助烧剂(Al、Ti、V的氧化物)等给Gd2O3-UO2芯块晶粒尺寸带来的影响进行了研究。结果表明,球磨工艺、添加助烧剂和微氧化气氛烧结等都有利于芯块的晶粒生长,晶粒大小分布均匀;添加U3O8和草酸铵对芯块的晶粒生长无明显的影响。  相似文献   

9.
Gd2O3-UO2可燃毒物燃料是近年来核电站采用较为普遍的可燃毒物之一。传统观点认为在芯块制造过程中添加U3O8粉末会降低芯块的烧结密度.本文研究了在Gd2O3-UO2芯块基体密度-94%T.D的基础上.添加不同品比例由AUC煅烧得到的U3O8粉末,经成型,H2/H2O气氛中1750℃烧结后表明.随着U3O8加入量的增加,芯块的密度也随之增加,U3O8添加量大于40wt%时芯块的密度达到-97%T.D.,U3O8的加入相当于起到了助烧剂的作用.这一现象和传统的U3O8降低芯块密度的观点正好相反.而芯块的平均晶粒尺寸-8μm。  相似文献   

10.
高密度石墨(HDG)由于其良好的抗热震性和高温强度,被认为是极具应用前景的坩埚候选材料之一。然而,熔盐电解法处理乏燃料过程中,高密度石墨坩埚会与高温氯化物熔盐、乏燃料等具有腐蚀性的介质直接接触,从而对坩埚造成腐蚀,影响坩埚的稳定性和使用寿命。坩埚表面等离子喷涂的氧化钇稳定的氧化锆(YSZ)涂层被证实具有优异的性能,但是涂层本身所存在的孔洞、裂纹以及液滴等缺陷严重制约了YSZ涂层在高温下的性能。因此,通过密封处理方法来提高涂层的致密度显得尤为迫切。本文利用磁控溅射(PVD)法和金属有机分解(MOD)法在等离子喷涂的氧化钇稳定的氧化锆(YSZ)涂层表面制备了Al2O3覆盖层,研究了这两种方法制备的Al2O3覆盖层对YSZ涂层在NaCl-KCl熔盐中的抗腐蚀性能的影响,并利用SEM、EDS、XRD等对腐蚀前后涂层的形貌以及微观结构进行了详细表征。结果表明:PVD法制备的Al2O3覆盖层主要分布于YSZ涂层表面,使其表面致密度得到一定程度提升,但涂层内部的致密度以...  相似文献   

11.
分别采用热压烧结与无压烧结工艺制备了掺杂5%~20%多壁碳纳米管(MWNTs)的UO2复合燃料芯块,分析了芯块的性能。结果表明:乙醇湿法球磨可将MWNTs均匀分散到UO2基体中;热压烧结芯块随MWNTs含量的增加,芯块密度逐渐下降,MWNTs含量为5%的芯块密度为96.7%TD;无压烧结芯块随MWNTs含量的增加,芯块密度先升高后降低,MWNTs含量为12.5%的芯块密度最高,为97.2%TD;1 400℃、50 MPa热压烧结工艺,MWNTs与UO2基体未发生反应;1 750℃无压烧结工艺,MWNTs与UO2基体产生微弱反应生成少量UC相;SEM显示,MWNTs在UO2基体以沿晶和穿晶状态分布;在250℃,热压烧结UO2-10%MWNTs芯块热导率为6.76 W/(m·K),提高了20.28%;无压烧结UO2-12.5%MWNTs芯块热导率为6.65 W/(m·K),提高了18.33%。  相似文献   

12.
13.
The kinetics of initial stage sintering of UO2 powder were reinvestigated, using Ar-10% H2 atmosphere. The effect of the addition of neodynium oxide was studied. The results revealed that surface and grain boundary diffusion mechanisms act simultaneously. The values of activation energies were found to be 48.48 ± 3.51 kcal/mole in the temperature range 870–942°C and 89.88 ± 9.87 kcal/mole in the temperature range of 942–1030°C for UO2, and 115.61 ± 7.77 kcal/mole in the temperature range 1030–1150°C for UO2 + Nd2O3. An important decrease in the calculated diffusion coefficient occurs by the addition of Nd2O3.  相似文献   

14.
The incorporation of gadolinium directly into nuclear fuel is important regarding reactivity compensation, which enables longer fuel cycles. The incorporation of Gd2O3 powder directly into the UO2 powder by dry mechanical blending is the most attractive process, because of its simplicity. Nevertheless, processing by this method leads to difficulties while obtaining sintered pellets with the minimum required density. This is due to the bad sintering behavior of the UO2-Gd2O3 mixed fuel, which shows a blockage in the sintering process that hinder the densification process. Minimal information exists regarding the possible mechanisms for this blockage and this is restricted to the hypothesis based on the formation of a low diffusivity Gd rich (U,Gd)O2 phase. The objective of this investigation was to study the phase formation in this system, thus contributing to clarifying the causes of the blockage. Experimental evidence indicated the existence of phases in the (U,Gd)O2 system that revealed structures different from the fluorite-type UO2 structure. These phases appear to be isostructural to the phases observed in the rare earth-oxygen system.  相似文献   

15.
The previous work by our group showed experimental evidence that supports the idea that a diffusion barrier is formed around Gd2O3 agglomerates due to the formation of gadolinium-rich (U,Gd)O2 phases with low diffusivity. This would be the reason for the bad sintering behavior of the UO2-Gd2O3 fuel. The objective of this investigation was to confirm that hypothesis by direct experimental evidence. Analysis of the results showed that the diffusion barrier hypothesis is not applicable.  相似文献   

16.
王纳秀  周慰囡 《核技术》2001,24(1):73-75
报道了用于加速器质谱计^26Al分析的Al2O3的制备流程及^26Al的测量过程。制备的空白样品^26Al/^27Al比值<10^-13,显示出同量异位素^26Mg干扰小。制备流程是成功的。  相似文献   

17.
The high-temperature specific heat of solid UO2, ThO2, and Al2O3 can be represented by an equation of the form Cp(s) = 3nRF(?D/T) + dT3, (1) where ?D is the Debye temperature, F(?D/T) is the Debye function, d represents contributions of the anharmonic vibrations within the lattice, and n denotes the number of atoms per molecule. In the liquid the corresponding equation is Cp(1) = 3nRF(?D/T) + hT2, (2) where h is the anharmonic term. It is shown that for Al2O3 and UO2, where experimental data for the liquid phase are also available, dh has the same value, Indicating that both materials behave identically. If we compare the thermodynamic relationship Cp ? Cv = Vα2KT, (3) where V is the volume, α the volume expansion coefficient, and K the bulk modulus, with equation (1), It follows that d must be equal to 2KT2; the value of 2KT2 is calculated in the temperature region where d was obtained; within experimental error they are equal.  相似文献   

18.
A laser process is presented that has been specially developed for joining oxide ceramics such as zirconium oxide (ZrO2) and aluminium oxide (Al2O3). It details, by way of example, the design of the laser process applied for to producing both Al2O3-Al2O3 and ZrO2-ZrO2 joints using siliceous glasses as fillers.The heat source used was a continuous wave diode laser with a wavelength range of 808-1010 nm. Glasses of the SiO2-Al2O3-B2O3-MeO system were developed as high-temperature resistant brazing fillers whose expansion coefficients, in particular, were optimally adapted to those of the ceramics to be joined. Specially designed measuring devices help to determine both the temperature-dependent emission coefficients and the synchronously determined proportions of reflection and transmission.The glass-ceramic joints produced are free from gas inclusions and macroscopic defects and exhibit a homogenous structure. The average strength values achieved were 158 MPa for the Al2O3 system and 190 MPa for the ZrO2 system, respectively.  相似文献   

19.
Previous work on diffusion in inert-gas bombarded Al2O3 has revealed the presence of four diffusion processes, of which two take place well below the temperatures for self-diffussion, one agrees with self-diffusion, and one occurs at temperatures well above those for self-diffusion. The present work serves to explore in greater detail the two low-temperature processes. It is shown that the first, which is found in -Al2O3, Al(OH)3, and γ-Al2O3beginning at about 100° C, is consistent with a range of ΔH's of 28 to 50 kcal/mole. The mechanism of the process is hinted at by the fact that it overlaps the temperatures both for Al(OH)3decomposition and for point-defect motion in -Al2O3; the correlation with point defects is believed, however, to be the more significant. The second process, which is found only in -Al2O3 beginning at 500–650° C, implies an essentially single ΔH lying between 69 and 79 kcal/mole. It was suggested previously by Matzke and Whitton on the basis of electron diffraction that the process could be attributed to the amorphous-crystalline transition of -Al2O3. Further aspects of low-temperature diffusion in Al2O3 were revealed by comparing autoradiographs of specimens of -A2O3which were bombarded to various doses and then either heated to 850° C or immersed in unheated 12N NaOH. Thus regions exposed to a high dose and which would be expected to be amorphous, had an increased sticking factor, a greater tendency to lose gas during heating, and an enhanced chemical reactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号