首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ciguatoxins (CTXs) and brevetoxins (PbTxs) modify the activation and inactivation processes of voltage-sensitive sodium channels (VSSC). In this study, the specific binding to rat brain synaptosomes of two commercial PbTxs, five purified CTXs and their derivatives was evaluated in competition with various concentrations of radiolabelled brevetoxin ([3H]PbTx-3). The results indicate that all CTXs bind specifically and with high affinity to sodium channels. Statistical analysis of the calculated inhibition constants identified two classes of toxins: the PbTxs and the less polar CTXs, and a group of CTXs of very high affinity. Relatively small chemical differences between the CTXs gave rise to significant differences in their affinity to the rat brain sodium channels. Cytotoxic effects associated with sodium channel activation were evaluated for the two classes of toxins on murine neuroblastoma cells, and their acute toxicity was determined in mice. CTXs have shown high affinities to VSSC of rat brain membranes and strong cytotoxic effects on neuroblastoma cells which correlate with their very low LD50 in mice. For PbTxs, it is different. Although binding with high affinity to VSSC and giving rise to significant cytotoxic effects, they are known to be poorly toxic intraperitoneally to mice. Furthermore, within the CTXs family, even though the most toxic compound (CTX-1B) has the highest affinity and the less toxic one (CTX-4B) the lowest affinity, a detailed analysis of the data pointed out a complex situation: (i) high affinity and toxicity seem to be related to the hydroxylation of the molecule on the A-ring rather than to the backbone type, (ii) acute toxicity in mice does not follow exactly the sodium-dependent cytotoxicity on neuroblastoma cells. These data suggest that the high toxicity of CTXs is related to sodium-dependent disturbances of the excitable membranes but might also involve other cellular mechanisms.  相似文献   

2.
1. The functional properties of sodium currents in acutely dissociated adult human, neonatal rat [postnatal day (P) 3 and P10], and mature rat (P21-23) neocortical pyramidal neurons were studied using whole-cell patch-clamp techniques. 2. The voltage dependence of activation and steady-state inactivation of neonatal rat sodium currents was shifted in the positive direction when compared with mature rat sodium currents. In contrast, no difference was detected between the voltage dependence of activation and steady-state inactivation of mature rat and adult human sodium currents. 3. The fast inactivation of rat (neonatal and mature) and human neocortical sodium currents were best fit with three components; a fast decay component, a slow decay component, and a persistent component. The magnitude of the persistent current in neocortical neurons averaged 1-3% of the peak current. Inactivation was faster for sodium currents in neonatal rat neocortical neurons than in mature neurons. No difference was detected in the kinetics of inactivation between mature rat and adult human sodium currents. 4. Saxitoxin (STX) inhibited neuronal sodium currents at nanomolar concentrations in neonatal and mature rat and adult human neocortical neurons. STX-insensitive channels were not detected. 5. STX affinity was also assayed using 3H-STX. A single high-affinity binding site was found in neonatal rat, mature rat, and adult human neocortical tissue. A developmental increase in STX binding site density in the rat neocortex was tightly correlated with the increase in the sodium current density (normalized to cell capacitance). Human neocortical tissue and mature rat neocortical tissue did not differ in STX binding site density or sodium current density. 6. From these electrophysiological and autoradiographic studies we conclude that 1) the increase in the normalized sodium current density and STX binding density with age postnatally reflects an increase in binding sites of sodium channels functionally expressed on neuronal membranes, 2) the functional differences in channel behavior with maturation can explain the higher threshold for excitation in neonatal neocortical neurons and the increase in accommodation or adaptation in firing in the mature neuron, and 3) mature rat neocortical neurons represent a valid model for the study of adult human pyramidal neocortical neurons in terms of Na+ channel expression and function.  相似文献   

3.
This review focuses on the mechanism(s) of action of neurotoxins acting on the inactivation of voltage-gated Na channels. Na channels are transmembrane proteins which are fundamental for cellular communication. These proteins form pores in the plasma membrane allowing passive ionic movements to occur. Their opening and closing are controlled by gating systems which depend on both membrane potential and time. Na channels have three functional properties, mainly studied using electrophysiological and biochemical techniques, to ensure their role in the generation and propagation of action potentials: 1) a highly selectivity for Na ions, 2) a rapid opening ("activation"), responsible for the depolarizing phase of the action potential, and 3) a late closing ("inactivation") involved in the repolarizing phase of the action potential. As an essential protein for membrane excitability, the Na channel is the specific target of a number of vegetal and animal toxins which, by binding to the channel, alter its activity by affecting one or more of its properties. At least six toxin receptor sites have been identified on the neuronal Na channel on the basis of binding studies. However, only toxins interacting with four of these sites (sites 2, 3, 5 et 6) produce alterations of channel inactivation. The maximal percentage of Na channels modified by the binding of neurotoxins to sites 2 (batrachotoxin and some alkaloids), 3 (alpha-scorpion and sea anemone toxins), 5 (brevetoxins and ciguatoxins) et 6 (delta-conotoxins) is different according to the site considered. However, in all cases, these channels do not inactivate. Moreover, Na channels modified by toxins which bind to sites 2, 5 and 6 activate at membrane potentials more negative than do unmodified channels. The physiological consequences of Na channel modifications, induced by the binding of neurotoxins to sites 2, 3, 5 and 6, are (i) an inhibition of cellular excitability due to an important membrane depolarization (site 2), (ii) a decrease of cellular excitability due to an important increase in the action potential duration (site 3) and (iii) an increase in cellular excitability which results in spontaneous and repetitive firing of action potentials (sites 5 and 6). The biochemical and electrophysiological studies performed with these toxins, as well as the determination of their molecular structure, have given basic information on the function and structure of the Na channel protein. Therefore, various models representing the different states of Na channels have been proposed to account for the neurotoxin-induced modifications of Na inactivation. Moreover, the localization of receptor binding sites 2, 3, 5 et 6 for these toxins on the neuronal Na channel has been deduced and the molecular identification of the recognition site(s) for some of them has been established on the alpha sub-unit forming the Na channel protein.  相似文献   

4.
The actions of potent mammalian neurotoxins isolated from the venom of two Australian funnel-web spiders were investigated using both electrophysiological and neurochemical techniques. Whole-cell patch clamp recording of sodium currents in rat dorsal root ganglion neurons revealed that versutoxin (VTX), isolated from the venom of Hadronyche versuta, produced a concentration-dependent slowing or removal of tetrodotoxin-sensitive (TTX-S) sodium current inactivation and a reduction in peak TTX-S sodium current. In contrast, VTX had no effect on tetrodotoxin-resistant (TTX-R) sodium currents or potassium currents. VTX also shifted the voltage dependence of sodium channel activation in the hyperpolarizing direction and increased the rate of recovery from inactivation. Ion flux studies performed in rat brain synaptosomes also revealed that robustoxin (RTX), from the venom of Atrax robustus, and VTX both produced a partial activation of 22Na+ flux and an inhibition of batrachotoxin-activated 22Na+ flux. This inhibition of flux through batrachotoxin-activated channels was not due to an interaction with neurotoxin receptor site 1 since [3H]saxitoxin binding was unaffected. In addition, the partial activation of 22Na+ flux was not enhanced in the presence of alpha-scorpion toxin and further experiments suggest that VTX also enhances [3H]batrachotoxin binding. These selective actions of funnel-web spider toxins on sodium channel function are comparable to those of alpha-scorpion and sea anemone toxins which bind to neurotoxin receptor site 3 on the channel to slow channel inactivation profoundly. Also, these modifications of sodium channel gating and kinetics are consistent with actions of the spider toxins to produce repetitive firing of action potentials.  相似文献   

5.
The cardiac muscle sarcoplasmic reticulum Ca2+ release channel (ryanodine receptor) is a ligand-gated channel that is activated by micromolar cytoplasmic Ca2+ concentrations and inactivated by millimolar cytoplasmic Ca2+ concentrations. The effects of sarcoplasmic reticulum lumenal Ca2+ on the purified release channel were examined in single channel measurements using the planar lipid bilayer method. In the presence of caffeine and nanomolar cytosolic Ca2+ concentrations, lumenal-to-cytosolic Ca2+ fluxes >/=0.25 pA activated the channel. At the maximally activating cytosolic Ca2+ concentration of 4 microM, lumenal Ca2+ fluxes of 8 pA and greater caused a decline in channel activity. Lumenal Ca2+ fluxes primarily increased channel activity by increasing the duration of mean open times. Addition of the fast Ca2+-complexing buffer 1,2-bis(2-aminophenoxy)ethanetetraacetic acid (BAPTA) to the cytosolic side of the bilayer increased lumenal Ca2+-activated channel activities, suggesting that it lowered Ca2+ concentrations at cytosolic Ca2+-inactivating sites. Regulation of channel activities by lumenal Ca2+ could be also observed in the absence of caffeine and in the presence of 5 mM MgATP. These results suggest that lumenal Ca2+ can regulate cardiac Ca2+ release channel activity by passing through the open channel and binding to the channel's cytosolic Ca2+ activation and inactivation sites.  相似文献   

6.
Mutations of the pore-region residue T442 in Shaker channels result in large effects on channel kinetics. We studied mutations at this position in the backgrounds of NH2-terminal-truncated Shaker H4 and a Shaker -NGK2 chimeric channel having high conductance (Lopez, G.A., Y.N. Jan, and L.Y. Jan. 1994. Nature (Lond.). 367: 179-182). While mutations of T442 to C, D, H, V, or Y resulted in undetectable expression in Xenopus oocytes, S and G mutants yielded functional channels having deactivation time constants and channel open times two to three orders of magnitude longer than those of the parental channel. Activation time courses at depolarized potentials were unaffected by the mutations, as were first-latency distributions in the T442S chimeric channel. The mutant channels show two subconductance levels, 37 and 70% of full conductance. From single-channel analysis, we concluded that channels always pass through the larger subconductance state on the way to and from the open state. The smaller subconductance state is traversed in approximately 40% of activation time courses. These states apparently represent kinetic intermediates in channel gating having voltage-dependent transitions with apparent charge movements of approximately 1.6 e0. The fully open T442S chimeric channel has the conductance sequence Rb+ > NH4+ > K+. The opposite conductance sequence, K+ > NH4+ > Rb+, is observed in each of the subconductance states, with the smaller subconductance state discriminating most strongly against Rb+.  相似文献   

7.
Many mutations that shift the voltage dependence of activation in Shaker channels cause a parallel shift of inactivation. The I2 mutation (L382I in the Shaker B sequence) is an exception, causing a 45 mV activation shift with only a 9 mV shift of inactivation midpoint relative to the wildtype (WT) channel. We compare the behavior of WT and I2 Shaker 29-4 channels in macropatch recordings from Xenopus oocytes. The behavior of WT channels can be described by both simple and detailed kinetic models which assume that inactivation proceeds only from the open state. The behavior of I2 channels requires that they inactivate from closed states as well, a property characteristic of voltage-gated sodium channels. A detailed "multiple-state inactivation" model is presented that describes both activation and inactivation of I2 channels. The results are consistent with the view that residue L382 is associated with the receptor for the inactivation particles in Shaker channels.  相似文献   

8.
Brevetoxins are produced by the marine dinoflagellate Ptychodiscus brevis, an organism linked to red tide outbreaks, and the accompanying toxicity to marine animals and to neurotoxic shellfish poisoning in humans. Brevetoxins bind with high affinity to voltage-sensitive sodium channels and cause increased sodium ion conductance and nerve cell depolarization. The brevetoxin competitive binding assay with tritium-labeled brevetoxin 3 (3H-PbTx-3) and rat brain synaptosomes is a sensitive and specific assay for pure brevetoxins. Here we report that extracts of manatee, turtle, fish, and clam tissues contain components that interfere with the assay by cooperative, noncompetitive inhibition of 3H-PbTx-3 specific binding and increased nonspecific binding to synaptosomes. By determining the "apparent" toxin concentration ("[Toxin]") in the extract at several assay concentrations, a reasonable correction for the complex inhibition could be made using a semilog plot to extrapolate [Toxin] to zero extract concentration to obtain [Toxin]0. Spiking 4 extracts with 60 nM PbTx-3 caused [Toxin]0 to increase by 41 +/- 8 nM, indicating that the noncompetitive components did not prevent the assay of toxin but did reduce the accuracy of the result. Fourfold repetition of the assay of 4 samples gave standard deviations of 25 to 60% of the value of [Toxin]0, so the error can be fairly large, especially for samples with little toxin. Purification of an extract with a 1 g sample prep column of C-18 decreased the complex inhibition by about 3-fold but did not eliminate interference in the assay.  相似文献   

9.
This extensive bilayer study of unpurified human brain channels from non-diseased and tumorous human brain involves more than 300 lipid bilayer experiments. Single channel conductances and subconductances, single channel fractional open times, the voltage-dependence of tetrodotoxin (TTX) block and the steady-state activation behavior of four different human brain synaptosomal preparations have been examined. Reproducible values have been obtained for the molecular electrophysiological parameters and their standard deviations, providing a database for future comparisons involving disease or drug-related changes in molecular sodium channel functions. In comparison with sodium channels from other species and under other experimental conditions, the bilayer system proved to be a reliable experimental setting. Despite the very different histology of the tissue probes, there were no significant differences in any of the examined electrophysiological features.  相似文献   

10.
Pacific ciguatoxin-1 (P-CTX-1), is a highly lipophilic cyclic polyether molecule originating from the marine dinoflagellate Gambierdiscus toxicus. Its effects were investigated on sodium channel subtypes present in acutely dissociated rat dorsal root ganglion neurons, using whole-cell patch clamp techniques. Concentrations of P-CTX-1 ranging from 0.2 to 20 nM had no effect on the kinetics of tetrodotoxin-sensitive (TTX-S) or tetrodotoxin-resistant (TTX-R) sodium channel activation and inactivation, however, a concentration-dependent reduction in peak current amplitude occurred in both channel types. The main actions of 5 nM P-CTX-1 on TTX-S sodium channels were a 13-mV hyperpolarizing shift in the voltage dependence of sodium channel activation and a 22-mV hyperpolarizing shift in steady-state inactivation (hinfinity). In addition, P-CTX-1 caused a rapid rise in the membrane leakage current in cells expressing TTX-S sodium channels. This effect was blocked by 200 nM TTX, indicating an action mediated through TTX-S sodium channels. In contrast, the main action of P-CTX-1 (5 nM) on TTX-R sodium channels was a significant increase in the rate of recovery from sodium channel inactivation. These results indicate that P-CTX-1 acts to modify voltage-gated sodium channels present in peripheral sensory neurons consistent with its action to increase nerve excitability. This provides an explanation for the sensory neurological disturbances associated with ciguatera fish poisoning.  相似文献   

11.
Voltage-sensitive sodium channels are responsible for the generation of electrical signals in most excitable tissues and serve as specific targets for many neurotoxins. At least seven distinct classes of neurotoxins have been designated on the basis of physiological activity and competitive binding studies. Although the characterization of the neurotoxin receptor sites was predominantly performed using vertebrate excitable preparations, insect neuronal membranes were shown to possess similar receptor sites. We have demonstrated that the two mutually competing anti-insect excitatory and depressant scorpion toxins, previously suggested to occupy the same receptor site, bind to two distinct receptors on insect sodium channels. The latter provides a new approach to their combined use in insect control strategy. Although the sodium channel receptor sites are topologically separated, there are strong allosteric interactions among them. We have shown that the lipid-soluble sodium channel activators, veratridine and brevetoxin, reveal divergent allosteric modulation on scorpion alpha-toxins binding at homologous receptor sites on mammalian and insect sodium channels. The differences suggest a functionally important structural distinction between these channel subtypes. The differential allosteric modulation may provide a new approach to increase selective activity of pesticides on target organisms by simultaneous application of allosterically interacting drugs, designed on the basis of the selective toxins. Thus, a comparative study of neurotoxin receptor sites on mammalian and invertebrate sodium channels may elucidate the structural features involved in the binding and activity of the various neurotoxins, and may offer new targets and approaches to the development of highly selective pesticides.  相似文献   

12.
In this study we have expressed and characterized recombinant cardiac and skeletal muscle sodium channel alpha subunits in tsA-201 cells under identical experimental conditions. Unlike the Xenopus oocyte expression system, in tsA-201 cells (transformed human embryonic kidney) both channels seem to gate rapidly, as in native tissue. In general, hSkM1 gating seemed faster than hH1 both in terms of rate of inactivation and rate of recovery from inactivation as well as time to peak current. The midpoint of the steady-state inactivation curve was approximately 25 mV more negative for hH1 compared with hSkM1. In both isoforms, the steady-state channel availability relationships ("inactivation curves") shifted toward more negative membrane potentials with time. The cardiac isoform showed a minimal shift in the activation curve as a function of time after whole-cell dialysis, whereas hSkM1 showed a continued and marked negative shift in the activation voltage dependence of channel gating. This observation suggests that the mechanism underlying the shift in inactivation voltage dependence may be similar to the one that is causing the shift in the activation voltage dependence in hSkM1 but that this is uncoupled in the cardiac isoform. These results demonstrate the utility and limitations of measuring cardiac and skeletal muscle recombinant Na+ channels in tsA-201 cells. This baseline characterization will be useful for future investigations on channel mutants and pharmacology.  相似文献   

13.
Activation of cyclic nucleotide-gated channels is thought to involve two distinct steps: a recognition event in which a ligand binds to the channel and a conformational change that both opens the channel and increases the affinity of the channel for an agonist. Sequence similarity with the cyclic nucleotide-binding sites of cAMP- and cGMP-dependent protein kinases and the bacterial catabolite activating protein (CAP) suggests that the channel ligand binding site consists of a beta-roll and three alpha-helices. Recent evidence has demonstrated that the third (or C) alpha-helix moves relative to the agonist upon channel activation, forming additional favorable contacts with the purine ring. Here we ask if channel activation also involves structural changes in the beta-roll by investigating the contribution of a conserved arginine residue that, in CAP and the kinases, forms an important ionic interaction with the cyclized phosphate of the bound ligand. Mutations that conserve, neutralize, or reverse the charge on this arginine decreased the apparent affinity for ligand over four orders of magnitude but had little effect on the ability of bound ligand to open the channel. These data indicate that the cyclized phosphate of the nucleotide approaches to within 2-4 A of the arginine, forming a favorable ionic bond that is largely unaltered upon activation. Thus, the binding site appears to be polarized into two distinct structural and functional domains: the beta-roll stabilizes the ligand in a state-independent manner, whereas the C-helix selectively stabilizes the ligand in the open state of the channel. It is likely that these distinct contributions of the nucleotide/C-helix and nucleotide/beta-roll interactions may also be a general feature of the mechanism of activation of other cyclic nucleotide-binding proteins.  相似文献   

14.
Clinical, electrophysiological, and molecular findings are reported for a family with dominant myotonia congenita in which all affected members have experienced long-term fluctuations of the symptom of myotonia. In some patients myotonia is combined with myalgia. The myotonia-causing mutation in this family is in the gene encoding the muscular chloride channel, hCIC-1, predicting the amino acid exchange G200R. We have constructed recombinant DNA vectors for expression of the mutant protein in tsA201 cells and investigation of the properties of the mutant channel. The most prominent alteration was a +100-mV shift of the midpoint of the activation curve. Therefore, within the physiological range the open probability of the mutant channel is markedly smaller than in wild-type. This shift is likely to be responsible for the myotonia in the patients. The fluctuating symptoms of this chloride channelopathy are discussed with respect to short-term fluctuations of myotonia in the sodium channelopathy of potassium-aggravated myotonia.  相似文献   

15.
The III-IV linker (L(III-IV)) of the rat brain sodium channel is critical for fast inactivation, possibly forming a fast inactivation particle. Inactivation can be disrupted by mutation of a conserved alanine at position 1329 in the S4-S5 loop of domain III. Combination of a charged mutation at 1329 with a compensatory (opposite) charge mutation at position 1489 in L(III-IV) partially restores inactivation of the channel. The compensatory charge mutant channel has a single-channel mean open time that is similar to that of the wild-type channel and is approximately 50 times shorter than that of the L(III-IV) mutant channel. The results of thermodynamic cycle analysis indicate that the mutations in domain III S4-S5 and L(III-IV) have a coupling energy of 2.8 kcal/mol, indicating that the two mutations act interdependently. These data suggest that L(III-IV) interacts directly with A1329, which may form part of the docking site if L(III-IV) is a fast inactivation particle.  相似文献   

16.
Genomic organization of the UBE3A/E6-AP gene and related pseudogenes   总被引:1,自引:0,他引:1  
Inactivation is a widespread property of voltage-gated ion channels. Recent molecular biological advances in the potassium channel field have elucidated two mechanistically distinct types of inactivation, N-type and C-type. Both of these mechanisms are partially coupled to activation and are usually voltage insensitive once activation is complete. This study compared the effects of a hypothetical open channel blocker on macroscopic currents by using two different models of the same cardiac transient outward current channel. Model 1 is a Hodgkin-Huxley-like model in which inactivation is an independent voltage-sensitive process. Model 2 is a model in which inactivation is voltage insensitive but is partially coupled to activation. Both models have been shown to reproduce closely the experimentally observed current. However, when modelling open channel block, the two models can differ substantially in their equilibrium degree of drug binding. This difference in equilibrium can make substantial changes in the rate of current recovery in subsequent depolarizations. It is shown that, for a rapid series of depolarizations, the time course of development of block and the degree of steady state block can differ substantially between the two models. In conclusion, molecular mechanisms of inactivation must be taken into account when modelling conformation-specific drug binding and use dependence.  相似文献   

17.
Ba2+ block of large conductance Ca2+-activated K+ channels was studied in patches of membrane excised from cultures of rat skeletal muscle using the patch clamp technique. Under conditions in which a blocking Ba2+ ion would dissociate to the external solution (150 mM N-methyl-D-glucamine+o, 500 mM K+i, 10 microM Ba2+i, +30 mV, and 100 microM Ca2+i to fully activate the channel), Ba2+ blocks with a mean duration of approximately 2 s occurred, on average, once every approximately 100 ms of channel open time. Of these Ba2+ blocks, 78% terminated with a single step in the current to the fully open level and 22% terminated with a transition to a subconductance level at approximately 0.26 of the fully open level (preopening) before stepping to the fully open level. Only one apparent preclosing was observed in approximately 10,000 Ba2+ blocks. Thus, the preopenings represent Ba2+-induced time-irreversible subconductance gating. The fraction of Ba2+ blocks terminating with a preopening and the duration of preopenings (exponentially distributed, mean = 0.75 ms) appeared independent of changes in [Ba2+]i or membrane potential. The fractional conductance of the preopenings increased from 0.24 at +10 mV to 0.39 at +90 mV. In contrast, the average subconductance level during normal gating in the absence of Ba2+ was independent of membrane potential, suggesting different mechanisms for preopenings and normal subconductance levels. Preopenings were also observed with 10 mM Ba2+o and no added Ba2+i. Adding K+, Rb+, or Na+ to the external solution decreased the fraction of Ba2+ blocks with preopenings, with K+ and Rb+ being more effective than Na+. These results are consistent with models in which the blocking Ba2+ ion either induces a preopening gate, and then dissociates to the external solution, or moves to a site located on the external side of the Ba2+ blocking site and acts directly as the preopening gate.  相似文献   

18.
Dihydropyridines (DHPs) block L-type Ca2+ channels more potently at depolarized membrane potentials, consistent with high affinity binding to the inactivated state. Nisoldipine (a DHP antagonist) blocks the smooth muscle channel more potently than the cardiac one, a phenomenon observed not only in native channels but also in expressed channels. We examined whether this tissue specificity was attributable to differences of inactivation in the two channel types. We expressed cardiac or smooth muscle alpha1C subunits in combination with beta2a and alpha2/delta subunits in human embryonic kidney cells, and used 2 mM Ca2+ as the permeant ion. This system thus reproduces the in vivo topology and charge carrier of the channels while facilitating comparison of the two alpha1C splice variants. Both voltage-dependent and isoform-specific sensitivity of 10 nM nisoldipine inhibition of the channel were demonstrated, with the use of -100 mV as the holding potential for fully reprimed channels and -65 mV to populate the inactivated state. Under drug-free conditions, we characterized fast inactivation (1-sec prepulses) and slow inactivation (3 min prepulses) in the two isoforms. Inactivation parameters were not statistically different in the two channel isoforms; if anything, cardiac channels tended to inactivate more than the smooth muscle channels at relevant voltages. Likewise, the voltage-dependent activation was identical in the two isoforms. We thus conclude that the more potent nisoldipine inhibition of smooth muscle versus cardiac L-type Ca2+ channels is not attributable to differences in channel inactivation or activation. Intrinsic, gating-independent DHP receptor binding affinity differences must be invoked to explain the isoform-specific sensitivity of the DHP block.  相似文献   

19.
Dehydrosoyasaponin-I (DHS-I) is a potent activator of high-conductance, calcium-activated potassium (maxi-K) channels. Interaction of DHS-I with maxi-K channels from bovine aortic smooth muscle was studied after incorporating single channels into planar lipid bilayers. Nanomolar amounts of intracellular DHS-I caused the appearance of discrete episodes of high channel open probability interrupted by periods of apparently normal activity. Statistical analysis of these periods revealed two clearly separable gating modes that likely reflect binding and unbinding of DHS-I. Kinetic analysis of durations of DHS-I-modified modes suggested DHS-I activates maxi-K channels through a high-order reaction. Average durations of DHS-I-modified modes increased with DHS-I concentration, and distributions of these mode durations contained two or more exponential components. In addition, dose-dependent increases in channel open probability from low initial values were high order with average Hill slopes of 2.4-2.9 under different conditions, suggesting at least three to four DHS-I molecules bind to maximally activate the channel. Changes in membrane potential over a 60-mV range appeared to have little effect on DHS-I binding. DHS-I modified calcium- and voltage-dependent channel gating. 100 nM DHS-I caused a threefold decrease in concentration of calcium required to half maximally open channels. DHS-I shifted the midpoint voltage for channel opening to more hyperpolarized potentials with a maximum shift of -105 mV. 100 nM DHS-I had a larger effect on voltage-dependent compared with calcium-dependent channel gating, suggesting DHS-I may differentiate these gating mechanisms. A model specifying four identical, noninteracting binding sites, where DHS-I binds to open conformations with 10-20-fold higher affinity than to closed conformations, explained changes in voltage-dependent gating and DHS-I-induced modes. This model of channel activation by DHS-I may provide a framework for understanding protein structures underlying maxi-K channel gating, and may provide a basis for understanding ligand activation of other ion channels.  相似文献   

20.
Polypeptide neurotoxins alter ion channel gating by binding to extracellular receptor sites, even though the voltage sensors are in their S4 transmembrane segments. By analysis of sodium channel chimeras, a beta-scorpion toxin is shown here to negatively shift voltage dependence of activation and enhance closed state inactivation by binding to a receptor site that requires glycine 845 (Gly-845) in the S3-S4 loop at the extracellular end of the S4 segment in domain II of the alpha subunit. Toxin action requires prior depolarization to drive the S4 voltage sensors outward, but these effects are lost in the mutant G845N. The results reveal a voltage sensor-trapping model of toxin action in which the IIS4 voltage sensor is trapped in its outward, activated position by toxin binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号