首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Primary extranodal malignant non-Hodgkin's lymphoma arising from the mucosa-associated lymphoid tissue (MALT-type lymphoma) represents a subtype of B-cell lymphoid malignancies with distinct clinicopathological features and is often associated with a favorable prognosis. Unlike the situation in nodal non-Hodgkin's lymphoma of B-cell lineage, few data are still available concerning the chromosomal constitution of MALT-type lymphomas. Until now, cytogenetic data from 29 low-grade MALT lymphomas with karyotypic alterations have been reported from different institutions, and virtually no data were available for high-grade MALT-type lymphomas. We have analyzed the cytogenetics of 44 MALT lymphomas arising in the stomach, parotid gland, thyroid gland, lung, breast, and conjunctiva. Clonal chromosome aberrations have been detected in 13 of 20 (65%) low-grade and 20 of 24 (83%) high-grade tumors. More than half of the low-grade lymphomas with abnormal karyotypes (7 of 13 cases, 53%) displayed clonal t(11;18)(q21;q21), thus specifically associating this translocation with MALT-type lymphomas for the first time in a larger series. In contrast, t(11;18) was not found in a single case of 20 high-grade MALT-type lymphomas with abnormal karyotypes, nor were translocations t(14;18) or t(3;14), characterizing about 10-35% of primary nodal large cell lymphomas. Instead, these lymphomas were associated with t(8;14)(q24;q32) in three cases, frequent deletions in the long arm of chromosome 6, and partial or whole gains of chromosomes 3, 7, 17, 18, and 21.  相似文献   

2.
Comparative genomic hybridization (CGH) was used to detect copy number changes of DNA sequences in the Ewing family of tumours (ET). We analysed 20 samples from 17 patients. Fifteen tumours (75%) showed copy number changes. Gains of DNA sequences were much more frequent than losses, the majority of the gains affecting whole chromosomes or whole chromosome arms. Recurrent findings included copy number increases for chromosomes 8 (seven out of 20 samples; 35%), 1q (five samples; 25%) and 12 (five samples; 25%). The minimal common regions of these gains were the whole chromosomes 8 and 12, and 1q21-22. High-level amplifications affected 8q13-24, 1q and 1q21-22, each once. Southern blot analysis of the specimen with high-level amplification at 1q21-22 showed an amplification of FLG and SPRR3, both mapped to this region. All cases with a gain of chromosome 12 simultaneously showed a gain of chromosome 8. Comparison of CGH findings with cytogenetic analysis of the same tumours and previous cytogenetic reports of ET showed, in general, concordant results. In conclusion, our findings confirm that secondary changes, which may have prognostic significance in ET, are trisomy 8, trisomy 12 and a gain of DNA sequences in 1q.  相似文献   

3.
DNA copy number changes were studied by comparative genomic hybridization (CGH) on bone marrow samples obtained from 72 patients with childhood acute lymphoblastic leukemia (ALL) at diagnosis. The patients had been admitted to the Helsinki University Central Hospital (Finland) between 1982 and 1997. CGH showed DNA copy number changes in 45 patients (62.5%) with a mean of 4.6 aberrations per patient (range, 1 to 22). The results of CGH and chromosome banding analysis were generally concordant, but CGH facilitated specific karyotyping in 34 cases. DNA copy number gains were more frequent than losses (gains:losses, 6:1). Gains of DNA sequences affected almost exclusively whole chromosomes and were most commonly observed in chromosomes 21 (25%), 18 (22.2%), X (19.4%), 10 (19.4%) and 17 (19.4%). The most common partial gain was 1q31-q32 (8.3%). The most common gains of chromosomes 21, 18, X, 10, 17, 14, 4, 6 and 8 appeared concurrently. High-level amplifications of small chromosome regions were sporadic, detected only in two patients (2.8%). Chromosome 21 was involved in both cases. The most common losses were 9p22-pter (12.5%) and 12p13-pter (11.1%). No statistically significant association between the CGH findings and the diagnostic white blood cell count was observed.  相似文献   

4.
DNA copy number changes were investigated in 29 leiomyosarcomas by comparative genomic hybridization. The most frequent losses were detected in 10q (20 cases, 69%) and 13q (17 cases, 59%). The most frequent gains were detected in 17p (16 cases, 55%). The most frequent high-level amplifications were detected in 17p (7 cases, 24%) and 8q (6 cases, 21%). A total of 137 losses and 204 gains were detected. Small tumors (less than 5 cm in diameter) displayed fewer changes per sample (3 to 11; mean, 7) than the other tumors (4 to 22; mean, 13). There was an increase in the number of gains from small tumors (mean, 4) to very large tumors (>20 cm; mean, 10). However, the number of losses was similar in small, large, and very large tumors (mean, 4.5). Tumor size-related aberrations were observed. Gains in 16p were detected in all small tumors but were infrequent in large and very large tumors (27% and 11%, respectively). Similarly, gains and high-level amplifications in 17p were more common in small (80%) than in very large tumors (33%). Gains in 1q, 5p, 6q, and 8q were not seen in any of the small tumors but were detected in large and very large tumors. Gains in 6q and 8q occurred in 8 of 9 cases (89%) of very large tumors, 5 of them with a high-level amplification in 8q.  相似文献   

5.
6.
Comparative genomic hybridization (CGH) was employed to survey genomic regions with increased and decreased copy number of the DNA sequence in 15 endometrial cancers [10 cases with microsatellite instability positive (MI+) and 5 cases with MI-]. Twelve of these 15 tumors (80%) showed abnormalities in copy number at one or more of the chromosomal regions. There were no regions with frequent chromosomal losses. Conversely, 11 of 15 cases (73%) showed gains on chromosome arms 1q (8/15; 53%) and/or 8q (6/15; 40%). Concordant gains of both chromosome arms 1q and 8q were observed in all three endometrial cancers of histological grade 3. These results suggest that these two chromosomal regions may contain genes whose increased expression contributes to development and/or progression of endometrial carcinogenesis. Two cases were further analyzed by fluorescence in situ hybridization (FISH) using three probes on chromosome 1 and two probes on chromosome 8 to more accurately determine increases in copy number. We found gains of chromosome 1q to 2.9-3.6 copies per cell and on 8q to 4.4 copies per cell.  相似文献   

7.
We revisited the cytogenetic alterations of the cervical adenocarcinoma cell line HeLa through the use of spectral karyotyping (SKY), comparative genomic hybridization (CGH), and fluorescence in situ hybridization (FISH). SKY analysis unequivocally characterized all abnormal chromosomes. Chromosomal breakpoints were primarily assigned by simultaneous assessment of SKY painted chromosomes and inverted 4,6-diamidino2-phenylindole banding from the same cell. Twenty clonally abnormal chromosomes were found. Comparison with previously reported HeLa G-banding karyotypes revealed a remarkably stable cytogenetic constitution because 18 of 20 markers that were found were present before. The classification of 12 markers was refined in this study. Our assignment of the remaining six markers was consistent with those described in the literature. The CGH map of chromosomal copy number gains and losses strikingly matched the SKY results and was, in a few instances, decisive for assigning breakpoints. The combined use of molecular cytogenetic methods SKY, CGH, and FISH with site-specific probes, in addition to inverted 4,6-diamidino-2-phenylindole or conventional G-banding analysis, provides the means to fully assess the genomic abnormalities in cancer cells. Human papillomaviruses (HPVs) are frequently integrated into the cellular DNA in cervical cancers. We mapped by FISH five HPV18 integration sites: three on normal chromosomes 8 at 8q24 and two on derivative chromosomes, der(5)t(5;22;8)(qll;q11q13;q24) and der(22)t(8; 22)(q24;q13), which have chromosome 8q24 material. An 8q24 copy number increase was detected by CGH. Dual-color FISH with a c-MYC probe mapping to 8q24 revealed colocalization with HPV18 at all integration sites, indicating that dispersion and amplification of the c-MYC gene sequences occurred after and was most likely triggered by the viral insertion at a single integration site. Numerical and structural chromosomal aberrations identified by SKY, genomic imbalances detected by CGH, as well as FISH localization of HPV18 integration at the c-MYC locus in HeLa cells are common and representative for advanced stage cervical cell carcinomas. The HeLa genome has been remarkably stable after years of continuous cultivation; therefore, the genetic alterations detected may have been present in the primary tumor and reflect events that are relevant to the development of cervical cancer.  相似文献   

8.
Comparative genomic hybridization (CGH) is a recent molecular cytogenetic method that detects and localizes gains or losses in DNA copy number across the entire tumor genome. We used CGH to examine 9 glioma cell lines and 20 primary and 10 recurrent glioblastoma tumors. More than 25% of the primary tumors had gains on chromosome 7; they also had frequent losses on 9p, 10, 13 and Y. The losses on chromosome 13 included several interstitial deletions, with a common area of loss of 13q21. The recurrent tumors not only had gains on chromosome 7 and losses on 9p, 10, 13 and Y but also frequent losses on 6 and 14. One recurrent tumor had a deletion of 10q22-26. Cell lines showed gains of 5p, 7 and Xp; frequent amplifications at 8q22-24.2, 7q21-32 and 3q26.2-29 and frequent losses on 4, 10, 13, 14 and Y. Because primary and recurrent tumors and cell lines showed abnormalities of DNA copy number on chromosomes 7, 10, 13 and Y, these regions may play a fundamental role in tumor initiation and/or progression. The propensity for losses on chromosomes 6 and 14 to occur in recurrent tumors suggests that these aberrations play a role in tumor recurrence, the development of resistance to therapy or both. Analysis of common areas of loss and gain in these tumors and cell lines provides a basis for future attempts to more finely map these genetic changes.  相似文献   

9.
Conventional cytogenetics and comparative genomic hybridization (CGH) were utilized to identify recurrent chromosomal imbalances in 12 pancreatic adenocarcinoma cell lines. Multiple deletions and gains were observed in all cell lines. Losses affecting chromosomes or chromosome arms 9p, 13, 18q, 8p, 4, and 10p and gains involving chromosome arms or bands 19q13.1, 20q, 5p, 7p, 11q, 3q25-qter, 8q24, and 10q were commonly observed. Interestingly, 19 distinct sites of high-level amplification were found by CGH. Recurrent sites involved 19q13.1 (6 cases), 5p (3 cases), and 12p and 16p (2 cases). Amplification of KRAS2 was demonstrated in 2 cell lines and that of ERBB2 in another. To define the occurrence of chromosome 19 amplification further, two-dimensional analysis of NotI genomic restriction digests and fluorescence in situ hybridization using probes from band 19q13.1 were utilized. High-level amplification of overlapping sets of chromosome 19 NotI fragments was exhibited in 3 cell lines of which 2 showed amplification of both OZF and AKT2 genes and 1 that of AKT2 alone. In these 3 cell lines, amplification of chromosome 19 sequences was associated with the presence of a homogeneously staining region. Our results provide evidence of heterogeneity in the extent of chromosome 19 amplification and suggest the existence of yet unknown amplified genes that may play a role in pancreatic carcinogenesis.  相似文献   

10.
Gene amplifications of c-myc, K-sam, and c-met were examined in cancer nuclei isolated from 154 primary gastric adenocarcinomas by fluorescence in situ hybridization (FISH) using cosmid probes for 8q24 (c-myc locus) and 7q31 (c-met), as well as a DNA probe for K-sam synthesized by PCR. The results were compared with those of Southern blot analysis. Dual-color FISH using gene locus and chromosome-specific probes detected gene amplifications of c-myc in 24 tumors (15.5%), c-met in 6 tumors (3.9%), and K-sam in 3 tumors (2.9%). The six tumors with c-myc amplification had also been found to have amplified c-erbB-2 in our previous study, and coamplification of c-myc and c-met was found in two other tumors. This technique also differentiated the amplified genes on the homogeneous staining region (HSR) and on double minute chromosomes (DMs) in metaphase spreads and interphase nuclei of cell lines established from poorly differentiated adenocarcinomas, KATO III, SNU 16, and HSC 39. Examination of FISH images of these cell lines suggested that the high-level amplifications of c-myc found in primary tumors occurred mainly on DM in four tumors and on HSR in one, and those of K-sam occured on DM in two tumors and on HSR in one. No high-level amplification of c-met was found. These high-level amplifications were also detected in formalin-fixed, paraffin-embedded tissues from primary gastric tumors and metastatic lymph nodes, in some of which heterogeneity of gene amplification was demonstrated within the same tumor. We conclude that FISH is an important tool for examining the proto-oncogene aberrations in intact cells in solid tumors.  相似文献   

11.
Clonal chromosomal changes in multiple myeloma (MM) and related disorders are not well defined, mainly due to the low in vivo and in vitro mitotic index of plasma cells. This difficulty can be overcome by using comparative genomic hybridization (CGH), a DNA-based technique that gives information about chromosomal copy number changes in tumors. We have performed CGH on 25 cases of MM, 4 cases of monoclonal gammopathy of uncertain significance, and 1 case of Waldenstrom's macroglobulinemia. G-banding analysis of the same group of patients demonstrated clonal chromosomal changes in only 13 (43%), whereas by CGH, the number of cases with clonal chromosomal gains and losses increased to 21 (70%). The most common recurrent changes detected by CGH were gain of chromosome 19 or 19p and complete or partial deletions of chromosome 13. +19, an anomaly that has so far not been detected as primary or recurrent change by G-banding analysis of these tumors, was noted in 2 cases as a unique change. Other recurrent changes included gains of 9q, 11q, 12q, 15q, 17q, and 22q and losses of 6q and 16q. We have been able to narrow the commonly deleted regions on 6q and 13q to bands 6q21 and 13q14-21. Gain of 11q and deletion of 13q, which have previously been associated with poor outcome, can thus be detected by CGH, allowing the use of this technique for prognostic evaluation of patients, without relying on the success of conventional cytogenetic analysis.  相似文献   

12.
We report the characterization of a de novo unbalanced chromosome rearrangement by comparative genomic hybridization (CGH) in a 15-day-old child with hypotonia and dysmorphia. We describe the combined use of CGH and fluorescence in situ hybridization (FISH) to identify the origin of the additional chromosomal material on the short arm of chromosome 6. Investigation with FISH revealed that the excess material was not derived from chromosome 6. Identification of unknown unbalanced aberrations that could not be identified by traditional cytogenetics procedures is possible by CGH analysis. Visual analysis of digital images from CGH-metaphase spreads revealed a predominantly green signal on the telomeric region of chromosome 10p. After quantitative digital ratio imaging of 10 CGH-metaphase spreads, a region of gain was found in the chromosome band 10p14-pter. The CGH finding was confirmed by FISH analysis, using a whole chromosome 10 paint probe. These results show the usefulness of CGH for a rapid characterization of de novo unbalanced translocation, unidentifiable by karyotype alone.  相似文献   

13.
Comparative genomic hybridization (CGH) was used to evaluate tissue specimens from 16 seminomas in order to elucidate the pathogenesis of germ cell tumours in males. A characteristic pattern of losses and gains within the entire genomes was detected in 94% of the seminomas by comparing the ratio profiles of the tumours with a standard of cytogenetically normal genomic DNA. Losses represented 43% of the total number of alterations often affecting chromosomes and chromosome arms 4, 5, 11, 13q, and 18q. Gains amounted to 57% and were often observed on 1q, 7, 8, 12, 14q, 15q, 21q, and 22q. Aberrations of 12p and 21q appeared most consistently. Results from CGH analysis displayed no relationship to the clinical stages of the malignancy. Some rare aberrations appeared, however, only in clinical stage II and in tumours showing relapse in the contralateral testis following orchiectomy, although the alterations were not present in all of the tumours in question. Losses of 16q13-21 and gains of 9q22.1-22.2 were demonstrated in both groups, while loss of 16p12 and gains of 6p21 and 6q23.3-24 were detected in the latter group as well. In conclusion, a specific pattern of chromosomal alterations was demonstrated in the seminomas by improved detection criteria, which increased specificity and sensitivity. The rare aberrations, which appeared only in tumours in improved detection criteria, which increased specificity and sensitivity. The rare aberrations, which appeared only in tumours in clinical stage II and relapsed tumours, may be linked to tumour progression, invasiveness, and bilateral disease.  相似文献   

14.
Comparative genomic hybridization (CGH) has been proven to be an important tool in interphase cytogenetics of solid tumors. Although, because of methodological implications, balanced aberrations are not detected by CGH, the technique has uncovered a variety of new and interesting imbalanced karyotype changes. However, only a few studies deal with its application to hematologic disorders, although this is a main topic of cytogenetics. The aim of our study was, therefore, to evaluate the usefulness of CGH in the examination of hematologic neoplasms. For this purpose, bone marrow aspirates of 33 patients with different hematologic disorders were examined with CGH and the results compared with conventional cytogenetics (CC) and fluorescence in situ hybridization (FISH). CGH showed chromosome changes in 8 of 33 cases. CC found balanced aberrations in 4 of 33 and unbalanced changes in 9 of 33 samples. Differences between CGH and CC in unbalanced aberrations were seen in four cases. In these samples, either the number of aberrant cells found by CC was low and, therefore, difficult to detect by CGH, or complex aberrations in different cell clones as seen in CC were lumped together as one karyotype by CGH. In one sample, CC was not capable of giving any results at all, whereas CGH showed trisomy 8. CGH was also helpful in defining the bands involved in the structural aberrations, which was difficult by CC in some cases because of the low quality of metaphase spreads. All results obtained by CGH were confirmed by FISH, whereas CC and FISH were discordant in one case. Although CGH was not able to detect all aberrations, it gave important additional information for the correct localization of the aberrations found in CC, and it was most helpful in samples not processed successfully in CC. These advantages would open up a new field of application for CGH not only for research, but also for diagnostic purposes.  相似文献   

15.
In this study, we investigated whether fluorescein isothiocyanate (FITC)-labeling of test DNA and Texas-red (TR) labeling of reference DNA in comparative genomic hybridization (CGH) experiments cause the results to differ from those obtained using the opposite combination (reverse labeling). Analysis was performed on a total of 20 DNA specimens consisting of 13 frozen bone marrow aspirates from patients with acute myeloid leukemia, and fresh peripheral blood samples from seven healthy donors. For CGH, one aliquot from each test DNA sample was labeled using nick-translation with FITC-dUTP and another with TR-dUTP. Afterwards, the FITC-dUTP and TR-dUTP-labeled test DNAs were hybridized to TR-dUTP- and FITC-dUTP-labeled normal reference DNAs, respectively. The results using the two combinations were compared with each other and with the results of G-banding karyotype analysis. Karyotype data was used to detect artifacts known to occur in some chromosome regions in CGH analysis. The control DNAs labeled with FITC or TR showed no DNA copy number changes. Regardless of the fluorochrome employed for labeling, no DNA copy number changes were detected using CGH in patients with normal karyotypes, nor in patients whose karyotype aberrations were present in less than 40% of cells. In the remaining patients, CGH revealed DNA copy number changes that coincided with the results of the G-banding analysis. Hybridization artifacts known to occur in CGH experiments affecting chromosome regions 1p33-pter, 16p, 17p, 19, and 22 were observed in 15-23% of the tumor samples labeled with FITC, but not in samples labeled with TR. In addition, other previously unreported overrepresentations affecting 7q21, 9q34, 16q, 17q, and chromosome 20 were observed at very low frequencies in up to 10% of the samples when FITC was used to label test DNA. However, when TR was used, overrepresentations were observed at 4q13-q21, 11q21-q23, 13q21-qter, and Xq21-q22, whereas 19p was underrepresented. The results demonstrate that TR-labeling confirms abnormalities detected using FITC-labeling and reduces hybridization artifacts in the known problematic regions of the human genome.  相似文献   

16.
Southern blot analysis was performed with a panel of DNA probes to detect rearrangements of c-myc, bcl-1, bcl-2 and bcl-3 in 14 cases of B-cell non-Hodgkin's lymphoma (NHL) with a clonal cytogenetic rearrangement involving the chromosome 14q32 locus and no known donor chromosome [t(14;?)(q32;?)]. In our experience, 21% of all chromosomal abnormalities involving the 14q32 locus in B-cell NHL are of this type. We found oncogene rearrangements in five of the 14 cases: bcl-1 rearrangement on one mantle zone lymphoma, bcl-2 rearrangements in two follicular lymphomas, and c-myc rearrangements in two small noncleaved cell lymphomas. We conclude that a 14q32+ abnormality of unknown origin is a relatively frequent karyotypic finding in B-cell NHL. In one third of the cases, known oncogenes that have been previously described in reciprocal translocations involving the immunoglobulin heavy chain locus were shown to be involved in the 14q32+ abnormality. The translocations in the other cases are likely to have involved one of the above oncogenes with breakpoints not revealed by the probes employed, other known oncogenes, or oncogenes that have not yet been identified.  相似文献   

17.
Conventional chromosome analysis (CCA) and interphase fluorescence in situ hybridization (FISH) was performed in 42 patients with mantle-cell lymphoma (MCL), with BCL1 rearrangement. The t(11;14)(q13;q32) or 11q abnormalities were detected by CCA in 34 cases, 20 of which had additional aberrations. A normal karyotype was observed in 8 cases. Probes detecting the chromosome aberrations that were observed in at least 3 cases by CCA, ie, +12, 13q14 deletion, and 17p deletion, were used for interphase FISH analysis. FISH detected total or partial +12, 13q14 deletion and 17p- in 28.5%, 52.4%, and 26% of the cases, respectively. The presence of these anomalies was not a function of karyotype complexity. Based on the results of CCA/FISH, three groups of increasing karyotype complexity were recognized: group 1, including 11 patients without detectable aberrations in addition to BCL1 rearrangement; group 2, including 14 patients with 1 to 2 additional anomalies; and group 3, including 17 patients with three or more additional anomalies. Clinical parameters associated with shorter survival were male sex (P =.006) and primary lymph-node involvement compared with primary bone marrow involvement (P =.015). Trisomy 12 was the only single cytogenetic parameter predictive of a poor prognosis (P =.006) and the best prognostic indicator was the derived measure of karyotype complexity (P <.0001), which maintained statistical significance in multivariate analysis (P<.0001). We arrived at the following conclusions: 13q14 deletion occurs at a high incidence in MCL; 17p deletion and total/partial +12 are relatively frequent events in MCL, the latter aberration being associated with a shorter survival; and the degree of karyotype complexity has a strong impact on prognosis in this neoplasia.  相似文献   

18.
OBJECT: This study was conducted to determine whether comparative genomic hybridization (CGH) is a more sensitive method for detecting genetic aberrations than other tests currently in use. METHODS: The authors used CGH to examine 40 primary and 13 recurrent adenomas obtained from 52 patients for loss and gain of genetic material. Copy number aberrations (CNAs) were detected in 25 (48%) of the 52 patients studied. The chromosomes affected were, in order of decreasing frequency, 11, 7, X, 1, 8, 13, 5, 14, 2, 6, 9, 10, 12, 3, 18, 21, 4, 16, 15, 19, 22, and Y. Endocrinologically active adenomas were more likely to contain (p = 0.009) and had a greater number (p = 0.003) of CNAs. Of 26 adenomas with CNAs, 18 showed multiple aberrations involving entire chromosomes or chromosome arms. The most frequent CNA involving a chromosome subregion, which was present in four (8%) of 53 adenomas, was the loss of all chromosome 11 material except for a preserved common segment containing 11q13. Immunoperoxidase staining did not detect cyclin D1 expression in those four cases, making cyclin D1 an unlikely target of this rearrangement. CONCLUSIONS: These findings indicate that genetic abnormalities are present in pituitary adenomas at a higher rate than previously reported, are associated with endocrinological activity, and often involve several chromosomes. Rearrangement at 11q13 may inactivate a tumor suppressor gene or activate an oncogene that is important in the initiation or progression of sporadic pituitary adenomas.  相似文献   

19.
Comparative genomic hybridization (CGH) analyses were performed on 27 human pleural mesothelioma tumour specimens, consisting of 18 frozen tumours and nine paraffin-embedded tumours, to screen for gains and losses of DNA sequences. Copy number changes were detected in 15 of the 27 specimens with a range from one to eight per specimen. On average, more losses than gains of genetic material were observed. The loss of DNA sequences occurred most commonly in the short arm of chromosome 9 (p21-pter), in 60% of the abnormal specimens. Other losses among the abnormal specimens were frequently detected in the long arms of chromosomes 4 (q31.1-qter, 20%), 6 (q22-q24, 33%), 13 (33%),14 (q24-qter, 33%) and 22 (q13, 20%). A gain in DNA sequences was found in the long arm of chromosome 1 (cen-qter) in 33% of the abnormal specimens. Our analysis is the first genome-wide screening for gains and losses of DNA sequences using comparative genomic hybridization in malignant pleural mesothelioma tumours. The recurrent DNA sequence changes detected in this study suggest that the corresponding chromosomal areas most probably contain genes important for the initiation and progression of mesothelioma.  相似文献   

20.
To identify recurrent chromosomal imbalances in pancreatic adenocarcinoma, 27 tumors were analyzed by using comparative genomic hybridization. In 23 cases chromosomal imbalances were found. Gains of chromosomal material were much more frequent than losses. The most common overrepresentations were observed on chromosomes 16p (eight cases), 20q (seven cases), 22q (six cases), and 17q (five cases) and under-representations on a subregion of chromosome 9p (eight cases). Distinct high-level amplifications were found on 1p32-p34, 6q24, 7q22, 12p13, and 22q. These data provide evidence for a number of new cytogenetically defined recurrent aberrations which are characteristic of pancreatic carcinoma. The overrepresented or underrepresented chromosomal regions represent candidate regions for potential oncogenes and tumor suppressor genes, respectively, possibly involved in pancreatic tumorigenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号