首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
以蛹虫草菌糠为原料,利用纤维素酶酶解提取多糖,通过乙醇分级醇沉与Sevag法脱蛋白对所提多糖进行初级分离纯化,得到4 种多糖(P1、P2、P3、P4)。利用凝胶色谱、气相色谱-质谱联用技术(gas chromatographymassspectrometry,GC-MS)对这4 种多糖的分子质量分布与单糖组成进行分析;进一步利用Superdex 200凝胶柱层析对P2进行纯化精制,通过高碘酸钠氧化、Smith降解、红外光谱和核磁共振(nuclear magnetic resonance,NMR)技术表征了精多糖P2的一级结构。结果表明:乙醇分级沉淀与Sevag脱蛋白方法的结合能满足蛹虫草菌糠多糖初级纯化的要求,得到了较纯的P2、P3、P4组分,分子质量分别为35.9、9.4、3.7 kD;其中P2是由葡萄糖组成的葡聚糖,其主链结构主要为α-(1→4)吡喃葡聚糖。P3和P4是由甘露糖、葡萄糖和半乳糖组成的杂多糖,且单糖组成均以葡萄糖为主。  相似文献   

2.
关于蛹虫草菌多糖发酵及培养基的研究   总被引:3,自引:2,他引:3  
王英臣 《中国酿造》2005,(10):29-31
研究了蛹虫草胞外多糖发酵过程,分析不同因素对胞外多糖得率的影响,获得了比较适宜的培养基组成和发酵条件。蛹虫草胞外多糖优化发酵培养基组成为:蔗糖12%,玉米浆2%,酵母膏2%,硝酸钾0.45%;发酵培养条件为:pH值6.5,温度20℃。此条件下蛹虫草胞外多糖得率为1.188g/100mL,菌丝体干重为1.221g/100mL。  相似文献   

3.
研究用超声波提取蛹虫草培养基中粗多糖的工艺条件,并比较了该多糖与蛹虫草子实体多糖的抗氧化性。结果表明:在料液比1∶30(质量比),乙醇用量15 mL,超声波功率70 W,超声时间90 min的条件下,蛹虫草培养基中多糖含量为3.30%。在0.2 mg/mL~1.0 mg/mL浓度范围内蛹虫草培养基多糖与子实体多糖抗氧化能力相似,且具有一定的量效关系。红外显示两种多糖结构相同。  相似文献   

4.
蛹虫草多糖的纯化及其分子量的测定   总被引:2,自引:0,他引:2  
以蛹虫草子实体为材料,对水提醇沉、硫酸锌盐去蛋白后获得蛹虫草粗多糖(CP)进行分离纯化。采用膜分离技术、DEAE.52柱层析及SephadexG-100柱层析对CP进行分离纯化,并使用高效凝胶渗透色谱法(HPGPC)测定各组分多糖分子量,以表征不同路径所得多糖的分子量分布。结果表明:CP经膜过滤、DEAE-52柱层析及SephadexG-100进一步柱层析得到多糖组分CP2-c2-s2,经HPGPC法鉴定,CP2-c2-s2为均一多糖组分,其平均分子量为20200Da。  相似文献   

5.
为能更好地产业化开发利用蛹虫草,对蛹虫草多糖的提取纯化工艺进行研究。通过正交试验探讨了料液比、提取温度和提取时间对多糖提取率的影响,在此基础上通过分析不同的醇沉和去蛋白纯化条件,确定蛹虫草多糖的最佳制备工艺。结果表明,最佳工艺为先在液料比30∶1(V∶m)、提取温度70℃和提取时间4h下提取多糖,然后在浓缩液浓度为14%、乙醇溶液浓度为80%下进行醇沉,再调节多糖溶液的pH=3并加入4%的硫酸锌。整个工艺多糖提取率为8.97%,纯度高达68.9%,有良好的去杂纯化效果且多糖损失较小。该研究为产业化生产蛹虫草多糖提供了基础数据。  相似文献   

6.
为综合利用蛹虫草小麦培养基,研究培养基多糖的提取和开发。在热回流水提法和超声波水提法单因素试验的基础上,采用热回流水提法正交试验筛选蛹虫草小麦培养基粗多糖最佳的提取工艺;用 MTT法检测了不同处理提纯多糖的抗肿瘤活性。结果表明热回流水提法提取培养基粗多糖效果优于超声波水提法;提取温度100 ℃、料液比1 g∶25 mL、提取3次、每次提取时间90 min,为最佳培养基粗多糖提取工艺;影响粗多糖提取效率的4个因素的主次关系是:提取温度>提取时间>提取次数>料液比;粗多糖的得率随着醇沉浓度的提高而提高。MTT试验发现质量浓度为5 mg/mL、培养时间72 h,培养基脱脂脱蛋白多糖A对HepG2肝癌细胞抑制率可达到83.02%,培养基脱脂多糖B的抑制率可达到75.39%,培养基未脱脂脱蛋白粗多糖C抑制率为30.61%,提纯多糖表现出较高的抑制率;100 ℃热回流水提蛹虫草子实体脱脂脱蛋白多糖F,质量浓度为5 mg/mL、培养72 h后,对Hepg2细胞抑制率平均值达到92.974%,与对照顺铂(SB)无显著差异,与多糖A差异显著。  相似文献   

7.
以蛹虫草培养基为材料,确定硝酸钙提取法去除其中淀粉的最佳条件,进而采用正交试验法提取多糖,Sevag法除蛋白,为培养基中多糖的提取及初步纯化提供依据。将80%Ca(NO3)2按料液比1∶20(g∶mL)在100℃条件下水浴提取3次,淀粉的去除率达42.57%。多糖提取的最优条件为料液比1∶30(g∶mL),在100℃浸提3 h,提取2次,提取率为3.31%。多糖溶液与Sevag试剂按1∶3比例提取1次,脱蛋白率可达94.2%,而多糖损失率仅为20.95%,效果较好。  相似文献   

8.
为缩短生产周期,降低成本,获得血糖指数(glycemic Index,GI)较低且活性物质含量高的蛹虫草发酵菌质。以菌丝生长速度、菌质预估血糖指数(expected glycemic index,eGI)、多糖及虫草素含量为指标,筛选固体发酵大米的蛹虫草优势菌株。结果表明,利用沈农大虫草、皖西虫草、云虫草和全虫草4个菌株对大米进行固体发酵后,快速消化淀粉(rapidly digestible starch,RDS)含量均有所减少,慢速消化淀粉(slowly digestible starch,SDS)和抗性淀粉(resistant starch,RS)含量增加,体外消化动力学数据表明发酵菌质的eGI值较未发酵前大米基质显著降低(P<0.05)。综合上述4个指标确定全虫草为固体发酵大米的最佳菌株,经过25 d发酵,发酵菌质的eGI值从发酵前80.33下降为65.63,达到中GI值水平,多糖含量为5.29%,虫草素含量为5185.98 mg/kg,其两种物质的含量均已高于子实体中的水平。因此,大米发酵菌质可替代子实体用于营养和功能食品开发,并为蛹虫草低GI产品的开发提供原料。  相似文献   

9.
采用DEAE-纤维素离子交换柱层析和SephadexG-150凝胶柱层析,对薤白粗多糖(PAM)进行了分离纯化;利用醋酸纤维素薄膜电泳和凝胶过滤法鉴定精制薤白多糖纯度;硅胶薄层层析分析精制多糖的单糖组成。结果表明:DEAE-纤维素柱分别用水、0.1mol.L-1NaCl、0.5mol.L-1Na0H洗脱分得三种级分,即水洗级分(PAM-I)、盐洗级分(PAM-II)和碱洗级分(PAM-III);这三种级分再经过SephadexG-150柱进一步分离纯化,得三个主要级分PAM-Ib、PAM-IIa及PAM-III’;经醋酸纤维素薄膜电泳和凝胶过滤法鉴定,它们为均一的多糖;硅胶薄层层析分析显示,PAM-Ib主要由半乳糖和葡萄糖组成,PAM-IIa主要由半乳糖、葡萄糖、果糖、木糖和鼠李糖组成,PAM-III’主要由半乳糖、葡萄糖和木糖组成。   相似文献   

10.
薤白多糖的分离纯化及组成分析   总被引:1,自引:1,他引:1  
采用DEAE-纤维素离子交换柱层析和SephadexG-150凝胶柱层析,对薤白粗多糖(PAM)进行了分离纯化;利用醋酸纤维素薄膜电泳和凝胶过滤法鉴定精制薤白多糖纯度;硅胶薄层层析分析精制多糖的单糖组成。结果表明:DEAE-纤维素柱分别用水、0.1mol.L-1NaCl、0.5mol.L-1Na0H洗脱分得三种级分,即水洗级分(PAM-I)、盐洗级分(PAM-II)和碱洗级分(PAM-III);这三种级分再经过SephadexG-150柱进一步分离纯化,得三个主要级分PAM-Ib、PAM-IIa及PAM-III’;经醋酸纤维素薄膜电泳和凝胶过滤法鉴定,它们为均一的多糖;硅胶薄层层析分析显示,PAM-Ib主要由半乳糖和葡萄糖组成,PAM-IIa主要由半乳糖、葡萄糖、果糖、木糖和鼠李糖组成,PAM-III’主要由半乳糖、葡萄糖和木糖组成。  相似文献   

11.
对北虫草液态发酵天然培养基进行优化研究,经比较确定适宜液态发酵的北虫草菌株及最佳氮源,之后采用混料设计对发芽糙米浆、麦芽汁和豆粕汁三种原料的组成配比进行优化,确定适宜北虫草液态发酵的最佳培养基。研究表明:北虫草CM-3菌株适宜液态发酵,且该菌在以豆粕为氮源时生长最好;发芽糙米浆、麦芽汁和豆粕汁(可溶性固形物含量分别为6%)混料比为55:5:40时,CM-3的菌丝干重达最高(17.0g/L)。  相似文献   

12.
采用索氏法提取北冬虫夏草多糖,探讨乙醇浓度、固液比、提取时间对多糖提取率的影响;通过正交实验;计优化索氏法提取多糖的最佳工艺条件为:50%乙醇、固液比1:30(g/mL)、提取时间6h,在此条件下验证实验结果多糖平均提取收率为31.95%.  相似文献   

13.
汤佳鹏  柳依婷  赵强  董伟  朱俐 《食品工业科技》2012,33(21):181-183,187
研究外源添加物,麸皮、玉米芯、腺苷等对蛹虫草液体发酵合成虫草素的影响,结果表明,发酵5d后加入3g/L腺苷,虫草素的产量最高。当腺苷添加量大于4g/L时,虫草素对腺苷的得率维持在25%,虫草素产量最大能达到1.62g/L。通过分析菌丝体生长与虫草素合成的动力学关系,发现虫草素的合成属于部分生长偶联型发酵。当振荡发酵4d后,静置发酵7d,虫草素的产量达到1.60g/L,产率达到145.5mg/L/d。这一蛹虫草合成虫草素的发酵工艺具有潜在的工业应用价值。  相似文献   

14.
吸附树脂对蛹虫草黄酮纯化工艺条件优化   总被引:2,自引:0,他引:2  
以蛹虫草黄酮粗提物为研究对象,分析黄酮纯化过程中树脂种类、上样体积、淋洗液pH值、洗脱液体积分数与体积及树脂重复使用次数多种影响因素,优化吸附树脂对黄酮的分离纯化工艺。通过对AB-8、D-101、NKA-9和NKA-Ⅱ 4 种吸附树脂对蛹虫草黄酮的静态吸附、静态解吸和静态吸附动力学等特性的研究,发现AB-8吸附树脂对蛹虫草黄酮有较高的吸附速率和单位吸附量,且易于解吸,是蛹虫草黄酮分离的理想树脂。通过优化实验,确定AB-8吸附树脂对蛹虫草黄酮分离纯化的最优工艺条件为树脂装柱体积100 mL时,上样体积40.0 mL、黄酮上样量47.536 mg、淋洗和洗脱速率2 BV/h、淋洗液pH 5、洗脱液乙醇体积分数和洗脱体积分别为85%和500 mL,树脂重复使用次数为2 次,在此条件下,蛹虫草黄酮的回收率在65%以上,纯度在17%以上,具有良好的分离纯化效果。  相似文献   

15.
以蛹虫草液体发酵菌丝体为原料,通过超声、微波方法提取蛹虫草中的虫草素,超声提取时间为20min;微波功率为200W,微波提取时间为110s,提取得到虫草素结晶体,含量是0.006mg/g.以虫草素为指标,通过正交试验确定蛹虫草液体发酵条件,虫草素含量最高的方案为:接种量15%,温度25℃,转数140r/min,培养时间96h.  相似文献   

16.
采用超声辅助法提取虫草花多糖,在单因素试验的基础上,通过L9(34)正交试验优化了虫草花多糖提取工艺;并就虫草花多糖对羟基自由基(·OH)、1,1-苯基-2-苦肼基(DPPH)自由基的清除作用和还原能力进行研究。结果表明:虫草花多糖最佳提取工艺条件为超声功率300 W,液料比30∶1(mL∶g),超声时间30 min,超声温度45 ℃。在此优化条件下,多糖的平均提取率为3.88%。抗氧化活性试验结果表明,虫草花多糖质量浓度在2.9~14.7 mg/L范围内,随着虫草花多糖质量浓度的增加,其OH、DPPH自由基清除能力及还原能力均逐渐增强,虫草花多糖质量浓度为14.7 mg/L时,对·OH和DPPH·清除率分别达到44.39%和56.34%,说明虫草花多糖具有较强的抗氧化活性。  相似文献   

17.
目的 提取纯化蛹虫草发酵液中的胞外多糖,初步研究其结构及免疫活性.方法 乙醇沉淀多糖,用Sevag法除去蛋白质、透析法除去小分子物质,经CM-52纤维素柱层析后得纯品.用紫外光谱测定多糖纯度,用凝胶柱层析法测定相对分子质量,高效毛细管电泳和红外光谱分析其分子结构,检测胞外多糖对小鼠巨噬细胞系RAW264.7产生NO的影响.结果 蛹虫草胞外多糖经脱蛋白、CM-52纤维素柱层析后可获得单一对称峰的纯多糖,相对分子质量为3.49 × 104,含羟基、糖醛结构和羰基结构,单糖基之一为甘露糖.多糖可显著刺激巨噬细胞分泌NO,具有活化免疫细胞、增强机体免疫力的作用.结论 该方法可获得高纯度蛹虫草胞外多糖,并证明它对巨噬细胞有活化作用.  相似文献   

18.
以溶氧速率常数KLa相等为放大原则,研究了从摇瓶培养至10L和100L发酵罐培养的规律,试验结果表明:在10L发酵罐中搅拌转速为50r/min且通风量为0.7m3/h时、搅拌转速为100r/min且通风量为0.6m3/h时、搅拌转速150r/min且通风量0.5m3/h时的KLa值与摇瓶优化条件下的KLa值一致;在100L发酵罐中搅拌转速为100r/min且通风量为3m3/h时、搅拌转速为150r/min且通风量为2m3/h时的KLa值与摇瓶优化条件下的KLa值一致。发酵试验验证在10L发酵罐中,搅拌转速为100r/min,通风量为0.6m3/h时发酵结果与摇瓶优化条件下的发酵结果一致。在100L发酵罐中,当搅拌转速为150r/min,通风量为2m3/h时,菌丝体产量达到了摇瓶优化结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号