首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了降低β-呋喃果糖苷酶Fru6使用成本,使β-2,6键型低聚果糖应用到实际中。该试验研究了对Fru6的固定化技术。通过多官能团树脂MI-BN4对Fru6进行固定化,优化了果糖苷酶Fru6固定化条件,并研究固定化酶Fru6酶学性质、固定化酶Fru6催化低聚果糖能力、以及固定化酶Fru6重复使用的能力。在吸附时间6 h,温度25℃,加酶量40 U的条件下进行固定化,可得到酶活力205. 7 U/g,酶活回收率95. 2%,蛋白吸附量0. 6 mg/g干树脂的固定化果糖苷酶。固定化酶Fru6催化合成低聚果糖能力相较于游离酶有所提高,低聚果糖转化率从62%提升到了72%,并且可重复使用12次,低聚果糖产量略有降低。得到了高酶活回收率且催化能力较好的固定化果糖苷酶,为生产6-低聚果糖奠定了基础。  相似文献   

2.
黑曲霉产β-呋喃果糖苷酶酶学性质研究   总被引:5,自引:1,他引:5  
对来源于黑曲霉的β-D-呋喃果糖苷酶的酶学特性进行了研究。结果表明,β-D-呋喃果糖苷酶的最适pH值为5.0,最适温度为50%。在40℃~60℃、pH值5.0~7.0其具有较好的稳定性。金属离子对β-呋喃果糖苷酶活性有影响。Mn^2+和Ca^2+能明显增强酶活,而Cu^2+和Ag^2+能抑制酶活。  相似文献   

3.
β-呋喃果糖苷酶水解蔗糖和低聚果糖,酶法生产高纯度低聚果糖,必须抑制或消除β-呋喃果糖苷酶的水解活性.本研究以工业生产低聚果糖的米曲霉菌株GX0015为研究材料,采用RT-PCR技术,克隆获得β-呋喃果糖苷酶基因(GenBank登录号:EU130944).利用生物信息学手段对β-呋喃果糖苷酶基因进行分析得知:该酶为456个氨基酸组成的亲水性膜外蛋白;功能域分析结果显示:该酶从第52个至第456个氨基酸残基之间序列属于糖苷酶32家族特征序列,并具有糖苷酶32家族酶活性中心的(N/G)DP(C/N)G和RDP保守序列;米曲霉β-呋喃果糖苷酶在进化树上的位置处于酵母菌的转化酶和细菌的六磷酸蔗糖水解酶之间.  相似文献   

4.
节杆菌10137β-呋喃果糖苷酶基因克隆及在大肠杆菌表达   总被引:1,自引:0,他引:1  
以一株高产β-呋喃果糖苷酶的节杆菌10137基因组为模板,成功地扩增出β-呋喃果糖苷酶基因,基因片段长度为1488bp,编码496个氨基酸。将扩增出的目的片段克隆到pFL-B13cl载体上,通过双酶切鉴定,确定该基因已成功克隆至表达载体。研究不同表达条件对β-呋喃果糖苷酶活性的影响,IPTG浓度0.5mmol/L,诱导温度22℃,诱导12h,比酶活可达1412.30U/g,SDS-PAGE电泳显示融合蛋白分子质量大小约为67u,亲和层析纯化后比酶活为2207.48U/g。将重组大肠杆菌在2L发酵罐中培养,诱导10h后β-呋喃果糖甘酶的比酶活为1208.23U/g。  相似文献   

5.
产β-呋喃果糖苷酶菌株的筛选及发酵条件初探   总被引:2,自引:0,他引:2  
以蔗糖为碳源,对几种日本曲霉、米曲霉、黑曲霉菌株产β-呋喃果糖苷酶能力进行比较研究,其中日本曲霉1产酶能力最强。研究了其β-呋喃果糖苷酶的产生条件:以蔗糖为碳源,酵母膏为氮源时,菌种产酶最高。该菌种产酶在温度30℃,转速200r/min,pH6.0,培养时间为96h时,β-呋喃果糖苷酶酶活达到最高值,Ut为3.10U/mL,Uh为0.86U/mL,Ut/Uh为3.60U/mL。  相似文献   

6.
分别以海藻酸钠、壳聚糖为载体,采用包埋-交联法固定β-呋喃果糖苷酶。对固定化过程中氯化钙浓度、戊二醛浓度、加酶量、包埋时间、交联时间等因素进行考察;采用正交试验设计对载体制备与酶固定化中的主要条件进行优化。通过对固定化酶活力回收比较,壳聚糖固定化酶活力回收率优于海藻酸钠。  相似文献   

7.
β-呋喃果糖苷酶被广泛应用于功能性食品低聚果糖的生产,它同时具有水解活力和转移活力,在不同条件下,两种活力分布并不一致.本文比较了β-呋喃果糖苷酶活力的三种测定方法.采用3,5-二硝基水杨酸(DNS)法,样品处理简单、成本低廉,但准确度低,宜于工业化生产和实验室粗放测定时使用;测总还原糖和葡萄糖联用法,是对DNS法的改进,但操作复杂、误差较大;高效液相色谱检测法,操作成本较高,但具有灵敏度和准确度高的特点.建立了β-呋喃果糖苷酶活力的高效液相色谱检测法,以浓度为25%(W/V)的蔗糖为酶反应底物,通过检测反应体系中葡萄糖和果糖的含量可准确计算β-呋喃果糖苷酶的水解活力和转移活力,实验结果令人满意.  相似文献   

8.
低聚乳果糖的酶法合成   总被引:6,自引:0,他引:6  
利用自制β-呋喃果糖苷酶合成低聚乳果糖,温度为42℃,pH为7.0,酶添加量为0.5mL,底物浓度为20%时,经十几个小时的反应,获得低聚乳果糖含量约30%.  相似文献   

9.
张媛媛  聂少平  万成  谢明勇 《食品科学》2010,31(19):236-240
以大孔阴离子树脂D311 为载体,对日本曲霉来源的β-D- 呋喃果糖苷酶进行离子交换法固定化。研究温度、pH 值、时间、游离酶液酶活力对固定化效果的影响,并在此基础上运用响应面法对固定化条件进行优化。结果表明,最佳固定化条件为:室温、pH6.6、固定化时间4h、游离酶液酶活力为900U/mL,在此条件下,固定化β-D- 呋喃果糖苷酶生产的低聚果糖产量可达58.16%。  相似文献   

10.
与生产功能性低聚糖相关的酶(上)   总被引:1,自引:0,他引:1  
制造功能性低聚糖的方法有提取法、酶水解法、酶转化法、酸水解法、碱转化法及化学合成法等,其中酶反应法是工业生产的主要方法.介绍了与低聚果糖相关的酶主要有菊粉酶、β-呋喃果糖苷酶和高果糖基转移活性果糖苷酶等,以及这些酶的作用原理和生产方法,并介绍了低聚果糖的制造方法及固定化酶在低聚果糖生产的应用。  相似文献   

11.
β-呋喃果糖苷酶法合成低聚乳果糖工艺优化   总被引:2,自引:0,他引:2  
目的:确定β-呋喃果糖苷酶合成低聚乳果糖的最佳工艺条件。方法:以蔗糖和乳糖为底物,利用β-呋喃果糖苷酶粗酶液合成低聚乳果糖,通过单因素和Box-Behnken试验,对酶法合成工艺进行响应面分析,得到酶法合成低聚乳果糖的最佳工艺参数。结果:最佳工艺条件为反应时间22.77h、pH7.0、反应温度35.0℃、底物质量浓度20.0g/100mL、底物与酶的体积比1:1,低聚乳果糖含量为22.70%。结论:Box-Behnken结合响应面优化果糖苷酶法合成低聚乳果糖工艺,模型可靠,方法可行。  相似文献   

12.
液-液双相体系中β-D-呋喃果糖苷酶催化转移反应的特性   总被引:5,自引:0,他引:5  
筛选出一些有利于维持 β D 呋喃果糖苷酶稳定性的有机溶剂 ,并研究了其在水 有机溶剂双相体系中催化转移反应的基本特性。非水相体系组成、pH值、温度和反应时间对酶反应速率有显著的影响 ,在丁酸乙酯 缓冲液双相体系中 ,有利于该酶发生转移反应、合成低聚糖的反应条件为 :有机溶剂体积比 91 5 8% (蔗糖底物初始量为 4 7 5 2 g/L ,酶添加量 0 5U/mL) ,pH 6 0 ,保温温度 5 4℃ ,此时振荡反应 32min后低聚糖合成率可达 3 4 1%。聚羟乙基异丁烯酸固定化 β D 呋喃果糖苷酶在丁酸乙酯 水双相体系中具有良好的稳定性和机械强度 ,其应用有待进一步研究  相似文献   

13.
研究表明,节杆菌10137产β 呋喃果糖苷酶的最佳条件为:温度为30℃,pH值7 5,接种体积分数为2%,装液体积为40mL.该条件下β 呋喃果糖苷酶的转移酶活为177.78U/mL,酶作用最适pH值为6.5,最适温度为30℃,在pH值为6.0~8.0和45℃以下稳定.Ag+和Cu2+对该酶有较强烈的抑制作用,EDTA和Mg2+对酶活也有一定影响.  相似文献   

14.
以蔗糖和乳糖为底物,利用节杆菌β-呋喃果糖苷酶合成低聚乳果糖,通过单因素和正交实验获得酶反应的最佳工艺条件为:酶反应体系的pH为6.5,反应温度37℃,酶用量1500U/g蔗糖,酶反应时间12h,反应体系的固形物含量为40%,蔗糖和乳糖的比例为1:1,该条件下低聚乳果糖的最大转化率为160.83mg/mL.  相似文献   

15.
用Arthrobacter sp.10137生产一种β-呋喃果糖苷酶(FFase),SDS-PAGE检测纯化后的酶分子质量为48.7ku左右,酶的比活力为19.81U/mg。纯酶的最适pH值和温度分别为6.5和40℃,并在pH6~8及40℃以下稳定。纯酶对甜菊苷和莱鲍迪A苷改性的最适条件是:酶量为15U/mL,莱鲍迪A苷和甜菊苷与蔗糖的摩尔比分别为0.0005:1和0.0012:1,反应时间为15h。在最适条件下,莱鲍迪A苷和甜菊苷的最大转化率分别为69.4%和72.0%。  相似文献   

16.
β-呋喃果糖苷酶催化甜菊糖的改性研究   总被引:2,自引:1,他引:1  
本文用β-呋喃果糖苷酶催化甜菊糖的分子改性,采用蔗糖和甜菊糖的混合反应体系,优化的催化反应条件为:pH 6.5,反应温度40℃,甜菊苷和甜菊双糖A苷与蔗糖的摩尔比为0.007和0.003,加酶量15 U/mL,反应时间15 h.在优化的反应条件下,甜菊苷和甜菊双糖A苷的转化率分别为63.6%和63%.  相似文献   

17.
壳聚糖/海藻酸钠固定化β-葡萄糖苷酶的研究   总被引:5,自引:3,他引:2  
以壳聚糖、海藻酸钠为包埋材料,戊二醛为交联剂,固定化β-葡萄糖苷酶,研究了固定化条件与固定化酶的活力回收的关系.通过单因素和正交实验确定了最佳的固定化方法,即:壳聚糖(脱乙酰度=85%)浓度为1.5%、海藻酸钠浓度为2%、戊二醛浓度为1.0%、钙离子浓度为0.7mol/L、pH为5,固定化酶的活力回收达到83.8%.固定化酶的最适温度为60℃,最适pH为5,该固定化酶重复使用5次后,其活力仍能保持70%.由于β-葡萄糖苷酶比较昂贵,采用固定化技术将其固定在载体上反复使用,可以达到简化工艺、降低成本的目的,作用于大豆异黄酮的水解方面具有潜在的应用前景.  相似文献   

18.
交联壳聚糖固定化β-葡萄糖苷酶的稳定性研究   总被引:1,自引:0,他引:1  
以戊二醛交联壳聚糖微球为载体通过共价连接反应固定化β-葡萄糖苷酶,研究固定化β-葡萄苷酶的稳定性。结果表明:固定化和游离β-葡萄糖苷酶的最适温度分别为706、5℃,最适pH分别为4.0、4.5。固定化β-葡萄苷酶贮存11周以后仍保持75.0%以上的相对活力,连续使用6批次后其相对活力仍保持在65.0%以上。固定化β-葡萄糖苷酶的高温、pH、贮存、操作稳定性明显高于游离酶。  相似文献   

19.
以二步法制备的ACA微胶囊为载体,对β-葡萄糖苷酶进行固定化,以固定化β-葡萄糖苷酶的酶比活力和酶的稳定性为考查指标,对影响二步法制备固定化β-葡萄糖苷酶的各因素及其性质进行了探讨。ACA微胶囊二步法固定β-葡萄糖苷酶的优化条件是:3.5%海藻酸钠溶解0.15g酶,逐滴滴入到2%的CaCl2溶液中引发25min,所形成微球先在0.4%壳聚糖(0.5%(v/v)醋酸溶解)溶液中进行成膜反应,再在0.2%海藻酸钠进行覆膜反应,然后用1%戊二醛交联4h(4℃)。用上述最适条件制备固定化酶,总酶活的回收率为68.3%。4℃下贮藏,固定化β-葡萄糖苷酶的酶活力在一个月内保持稳定,重复使用3次后其活力仍保持在原来的80%以上。固定化酶反应的最适温度是60℃,最适pH是4.6。  相似文献   

20.
磁性壳聚糖、海藻酸钠固定β-呋喃果糖苷酶研究   总被引:1,自引:0,他引:1  
分别以海藻酸钠、壳聚糖复合Fe3O4为载体,采用包埋―交联法固定β–呋喃果糖苷酶。对固定化过程氯化钙浓度、戊二醛浓度、加酶量、包埋时间、交联时间等因素进行考察;并采用正交试验对载体制备与酶固定化中主要条件进行优化;通过对固定化酶活力回收比较,磁性海藻酸钠固定化酶活力回收率优于磁性壳聚糖。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号