首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Objective: It is difficult to identify the gold nanoparticles (AuNPs) intracellularly due to their non-fluorescent nature. Although gold can quench the fluorescence of any fluorophore, hence it is also difficult to combine gold with a fluorophore such as a semiconductor quantum dots (QDs). The aim of this study was to prepare a single fluorescent stable AuNPs combined with QDs (QDs-Au-NPs) which can be easily detected intracellularly.

Methods: QDs-Au-NPs were prepared via a simple one-step process through controlling the spacing between them using polyethylene glycol (PEG) as space linker in the form of PEGylated QDs. Furthermore, the applicability of this system was evaluated after coating the particles with somatostatin citrate, SST, to active target somatostatin receptors (SSTRs), and identification of the internalized particles via confocal laser scanning spectroscopy.

Results: The results showed that the produced Au shell has a thickness of 2.0?±?0.2?nm and QDs-Au-NPs showed the same fluorescence intensity compared to the unmodified QDs. Additionally, a stable monodisperse QDs-Au-NPs coated with SST were prepared after coating with 11-Mercaptoundecanoic acid. Moreover, cellular uptake study in Human Caucasian breast adenocarcinoma cell lines showed that QDs-Au-SST-NPs could be detected easily using the confocal microscope. In addition, they showed a significant (p?≤?.05) internalization per cell compared to untreated QDs-Au-NPs as detected by flow cytometry.

Conclusion: It could be concluded that the produced QDs-Au-NPs has a strong fluorescence property like QDs which enable them to be easily detected after cells internalization.  相似文献   

2.
3.
Quantum dots (QDs) coated with an albumin‐derived copolymer shell exhibit significant photoresponsiveness to DNA loading and have great potential for investigating gene delivery processes. The QDs reported herein are positively charged, have attractive optical properties, and are noncytotoxic and notably stable in live cells. Their complex formation with plasmid DNA leads to proportionally decreased photoluminescence and efficient gene transfection is observed. Therefore, they are suitable for live‐cell bioimaging and mechanistic studies of nonviral gene delivery. Fluorescence correlation spectroscopy is applied for the first time to investigate individual QDs diffusing in large endosomes inside living cells, and serves as a valuable tool to study the physical properties of QDs inside live cells. The data obtained in this study strongly support the notable stability of these QDs, even in cell endosomes.  相似文献   

4.
The dynamic behaviour of gold nanoparticles functionalised with glucose (Glc‐Au NPs) has been studied here by means of fluorescence correlation spectroscopy (FCS). Meaningful data on the state of aggregation and dynamics of Glc‐Au NPs fluorescently‐labelled with HiLyte Fluor647 (Glc‐Au‐Hi NPs) in the intracellular environment were obtained. Moreover, the work presented here shows that FCS can be used to visualise the presence of single NPs or NP aggregates following uptake and to estimate, locally, NP concentrations within the cell. FCS measurements become possible after applying a “prebleaching” methodology, when the immobile NP fraction has been effectively removed and thus significant FCS data has been recorded. In this study, Glc‐Au‐Hi NPs have been incubated with HepG2 cells and their diffusion time in the intracellular environment has been measured and compared with their diffusion value in water and cell media.  相似文献   

5.
6.
通过对Fe3O4纳米颗粒的SiO2包覆和表面胺基化修饰,成功地将CdSe量子点(QDs)均匀地包覆在Fe3O4纳米粒子表面,制备了稳定的、具有磁性/荧光双功能的纳米颗粒,结果表明,所制备的纳米颗粒具有良好的分散性、优异的磁响应特性和荧光发射性能,为制备该类双功能纳米材料,拓宽其应用领域提供了新的途径。  相似文献   

7.
8.
ZrMOF@CdTe nanoparticles (NPs) with high fluorescence were synthesized by hydrothermal method. The morphology, particle size distribution, compositions, fluorescence properties and stability of the synthesized ZrMOF@CdTe were analyzed via the characterization by TEM, ICP-AES and fluorescence spectrophotometry, and the effects of the reaction time and pH value on the fluorescent property of ZrMOF@CdTe NPs were discussed. The results show that ZrMOFs could maintain its morphology and structure well during the process of loading CdTe quantum dots. With the increase of the loading reaction time, the red-shifted emission peaks of ZrMOF@CdTe NPs appear, and their fluorescence gradually changes from green to red color. With the increase of the pH value and temperature of the hydrothermal reaction, the fluorescence of ZrMOF@CdTe NPs was also consistent with the red-shifted change. The fluorescent property of ZrMOF@CdTe NPs could be remained for more than 3 months. Therefore, ZrMOF@CdTe NPs synthesized by the hydrothermal method have the characteristics of simple operation, adjustable fluorescent color and high stability, and the potential application in the fields of biological detection and sensing is expected.  相似文献   

9.
Biological responses of cells and organisms to nanoparticle exposure crucially depend on the properties of the protein adsorption layer (“protein corona”) forming on nanoparticle surfaces and their characterization is a crucial step toward a deep, mechanistic understanding of their build‐up. Previously, adsorption of one type of model protein on nanoparticles was systematically studied in situ by using fluorescence correlation spectroscopy. Here, the first such study of interactions is presented between water‐solubilized CdSe/ZnS quantum dots (QDs) and a complex biofluid, human blood serum. Despite the large number of proteins in serum, a protein layer of well‐defined (average) thickness forming on QD surfaces is observed. Both the thickness and the apparent binding affinity depend on the type of QD surface ligand. Kinetic experiments reveal that the protein corona formed from serum is irreversibly bound, whereas the one formed from human serum albumin was earlier observed to be reversible. By using sodium dodecyl sulfate‐polyacrylamide gel electrophoresis and mass spectrometry, the most abundant serum proteins contributing to the formation of a hard corona on the QDs are identified.  相似文献   

10.
Here, we report the synthesis and characterizations of sol-gel derived zinc oxide (ZnO) quantum dots (QDs) using zinc acetate dihydrate (Zn(CH3COO)2.2H20) and lithium hydroxide monohydrate (LiOH.H20) as raw material. The as-prepared ZnO QDs was annealed at different temperature (400, 700, and 900 ℃) and the structural, optical properties were investigated by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), UV-Vis and photoluminescence (PL) spectroscopy. The powder XRD patterns of the obtained samples showed the formation of single-phase wurtzite structure and the morphological changes have been observed with increasing annealing temperature. In the absorption spectra, the optical band gap of nanocrystalline ZnO QDs decreased from 3.18 to 3.11 eV and the particle size increased with increasing temperature. In the PL spectra, a broad green emission peak related to defect levels in the visible range of the spectra have been recorded.  相似文献   

11.
12.
Along with the widespread development of their bioapplications, concerns about the biosafety of quantum dots (QDs) have increasingly attracted intensive attention. This study examines the toxic effect and subcellular location of cadmium telluride (CdTe) QDs with different sizes against yeast Saccharomyces cerevisiae. The innovative approach is based on the combination of microcalorimetric, spectroscopic, electrochemical, and microscopic methods, which allows analysis of the toxic effect of CdTe QDs on S. cerevisiae and its mechanism. According to the values of the half inhibitory concentration (IC(50) ), CdTe QDs exhibit marked cytotoxicity in yeast cells at concentrations as low as 80.81 nmol L(-1) for green-emitting CdTe QDs and 17.07 nmol L(-1) for orange-emitting CdTe QDs. QD-induced cell death is characterized by cell wall breakage and cytoplasm blebbing. These findings suggest that QDs with sizes ranging from 4.1 to 5.8 nm can be internalized into yeast cells, which then leads to QD-induced cytotoxicity. These studies provide valuable information for the design and development of aqueous QDs for biological applications.  相似文献   

13.
14.
The rational design and synthesis of CdSe/CdTe/ZnTe (core-shell-shell) type-II quantum dots are reported. Their photophysical properties are investigated via the interband CdSe-->ZnTe emission and its associated relaxation dynamics. In comparison to the strong CdSe (core only) emission (lambda(max) approximately 550 nm, Phi(f) approximately 0.28), a moderate CdSe-->CdTe emission (lambda(max) approximately 1026 nm, Phi(f) approximately 1.2 x 10(-3)) and rather weak CdSe-->ZnTe interband emission (lambda(max) approximately 1415 nm, Phi(f) approximately 1.1 x 10(-5)) are resolved for the CdSe/CdTe/ZnTe structure (3.4/1.8/1.3 nm). Capping CdSe/CdTe with ZnTe results in a distant electron-hole separation between CdSe (electron) and ZnTe (hole) via an intermediate CdTe layer. In the case of the CdSe/CdTe/ZnTe structure, a lifetime as long as 150 ns is observed for the CdSe-->ZnTe (1415 nm) emission. This result further indicates an enormously long radiative lifetime of approximately 10 ms. Upon excitation of the CdSe/CdTe/ZnTe structure, the long-lived charge separation may further serve as an excellent hole carrier for catalyzing the redox oxidation reaction.  相似文献   

15.
16.
To achieve a high separation efficiency of photogenerated carriers in semiconductors, constructing high-quality heterogeneous interfaces as charge flow highways is critical and challenging. This study successfully demonstrates an interfacial chemical bond and internal electric field (IEF) simultaneously modulated 0D/0D/1D-Co3O4/TiO2/sepiolite composite catalyst by exploiting sepiolite surface-interfacial interactions to adjust the Co2+/Co3+ ratio at the Co3O4/TiO2 heterointerface. In situ irradiation X-ray photoelectron spectroscopy and density functional theory (DFT) calculations reveal that the interfacial Co2+ O Ti bond (compared to the Co3+ O Ti bond) plays a major role as an atomic-level charge transport channel at the p-n junction. Co2+/Co3+ ratio increase also enhances the IEF intensity. Therefore, the enhanced IEF cooperates with the interfacial Co2+ O Ti bond to enhance the photoelectron separation and migration efficiency. A coupled photocatalysis-peroxymonosulfate activation system is used to evaluate the catalytic activity of Co3O4/TiO2/sepiolite. Furthermore, this work demonstrates how efficiently separated photoelectrons facilitate the synergy between photocatalysis and peroxymonosulfate activation to achieve deep pollutant degradation and reduce its ecotoxicity. This study presents a new strategy for constructing high-quality heterogeneous interfaces by consciously modulating interfacial chemical bonds and IEF, and the strategy is expected to extend to this class of spinel-structured semiconductors.  相似文献   

17.
We report here the preparation of nanoparticles of iron oxide in the presence of polysaccharide templates. Interaction between iron (II) sulfate and template has been carried out in aqueous phase, followed by the selective and controlled removal of the template to achieve narrow distribution of particle size. Particles of iron oxide obtained have been characterized for their stability in solvent media, size, size distribution and crystallinity and found that when the negative value of the zeta potential increases, particle size decreases. A narrow particle size distribution with D 100 = 275 nm was obtained with chitosan and starch templates. SEM measurements further confirm the particle size measurement. Diffuse reflectance UV-vis spectra values show that the template is completely removed from the final iron oxide particles and powder XRD measurements show that the peaks of the diffractogram are in agreement with the theoretical data of hematite. The salient observations of our study shows that there occurs a direct correlation between zeta potential, polydispersity index, bandgap energy and particle size. The crystallite size of the particles was found to be 30–35 nm. A large negative zeta potential was found to be advantageous for achieving lower particle sizes, owing to the particles remaining discrete without agglomeration.  相似文献   

18.
19.
实验设计制备了一种由12层硫化锌包覆硒化镉的核壳型量子点(CdSe/12ZnS QDs)和纳米金颗粒(Au NPs)自组装形成的CdSe/12ZnS QDs/Au NPs复合结构, 并将其应用于神经性毒剂模拟剂氰基磷酸二乙酯(Diethyl Cyanophosphonate, DCNP)的高效检测。QDs由于与Au NPs存在荧光共振能量转移作用(Fluorescence Resonance Energy Transfer, FRET)而发生荧光猝灭, 乙酰胆碱酯酶(AChE)水解氯化硫代乙酰胆碱(ATC)生成的硫胆碱能够将量子点取代而使量子点荧光恢复。当QDs与Au NPs的摩尔浓度比为20 : 1时, QDs荧光猝灭效果最佳, AChE浓度为1.0×10 -3 U/L时, QDs荧光恢复效果最好。DCNP的存在会抑制AChE的活性, 减少硫胆碱的生成并降低QDs的荧光恢复效率, 通过对QDs荧光恢复效率测定能够检测DCNP。在最优条件下对DCNP的检测结果表明, 量子点的荧光恢复效率与DCNP浓度的对数在5.0×10 -9~5.0×10 -4mol/L的范围内存在良好的线性关系, 检出限达5.0×10 -9mol/L。  相似文献   

20.
The Kirkendall effect is a consequence of the different diffusivities of atoms in a diffusion couple causing a supersaturation of lattice vacancies. This supersaturation may lead to a condensation of extra vacancies in the form of so-called "Kirkendall voids" close to the interface. On the macroscopic and micrometer scale these Kirkendall voids are generally considered as a nuisance because they deteriorate the properties of the interface. In contrast, in the nanoworld the Kirkendall effect has been positively used as a new fabrication route to designed hollow nano-objects. In this Review we summarize and discuss the demonstrated examples of hollow nanoparticles and nanotubes induced by the Kirkendall effect. Merits of this route are compared with other general methods for nanotube fabrication. Theories of the kinetics and thermodynamics are also reviewed and evaluated in terms of their relevance to experiments. Moreover, nanotube fabrication by solid-state reactions and non-Kirkendall type diffusion processes are covered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号