首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An efficient and accurate numerical scheme is proposed, analyzed and implemented for the Kawahara and modified Kawahara equations which model many physical phenomena such as gravity-capillary waves and magneto-sound propagation in plasmas. The scheme consists of dual-Petrov-Galerkin method in space and Crank-Nicholson-leap-frog in time such that at each time step only a sparse banded linear system needs to be solved. Theoretical analysis and numerical results are presented to show that the proposed numerical is extremely accurate and efficient for Kawahara type equations and other fifth-order nonlinear equations. This work is partially supported by the National Science Council of the Republic of China under the grant NSC 94-2115-M-126-004 and 95-2115-M-126-003. This work is partially supported by NSF grant DMS-0610646.  相似文献   

2.
In this paper we continue the study, which was initiated in (Ben-Artzi et al. in Math. Model. Numer. Anal. 35(2):313–303, 2001; Fishelov et al. in Lecture Notes in Computer Science, vol. 2667, pp. 809–817, 2003; Ben-Artzi et al. in J. Comput. Phys. 205(2):640–664, 2005 and SIAM J. Numer. Anal. 44(5):1997–2024, 2006) of the numerical resolution of the pure streamfunction formulation of the time-dependent two-dimensional Navier-Stokes equation. Here we focus on enhancing our second-order scheme, introduced in the last three afore-mentioned articles, to fourth order accuracy. We construct fourth order approximations for the Laplacian, the biharmonic and the nonlinear convective operators. The scheme is compact (nine-point stencil) for the Laplacian and the biharmonic operators, which are both treated implicitly in the time-stepping scheme. The approximation of the convective term is compact in the no-leak boundary conditions case and is nearly compact (thirteen points stencil) in the case of general boundary conditions. However, we stress that in any case no unphysical boundary condition was applied to our scheme. Numerical results demonstrate that the fourth order accuracy is actually obtained for several test-cases.  相似文献   

3.
A Central Discontinuous Galerkin Method for Hamilton-Jacobi Equations   总被引:1,自引:0,他引:1  
In this paper, a central discontinuous Galerkin method is proposed to solve for the viscosity solutions of Hamilton-Jacobi equations. Central discontinuous Galerkin methods were originally introduced for hyperbolic conservation laws. They combine the central scheme and the discontinuous Galerkin method and therefore carry many features of both methods. Since Hamilton-Jacobi equations in general are not in the divergence form, it is not straightforward to design a discontinuous Galerkin method to directly solve such equations. By recognizing and following a “weighted-residual” or “stabilization-based” formulation of central discontinuous Galerkin methods when applied to hyperbolic conservation laws, we design a high order numerical method for Hamilton-Jacobi equations. The L 2 stability and the error estimate are established for the proposed method when the Hamiltonians are linear. The overall performance of the method in approximating the viscosity solutions of general Hamilton-Jacobi equations are demonstrated through extensive numerical experiments, which involve linear, nonlinear, smooth, nonsmooth, convex, or nonconvex Hamiltonians.  相似文献   

4.
Real life convection-diffusion problems are characterized by their inherent or externally induced uncertainties in the design parameters. This paper presents a spectral stochastic finite element semi-Lagrangian method for numerical solution of convection-diffusion equations with uncertainty. Using the spectral decomposition, the stochastic variational problem is reformulated to a set of deterministic variational problems to be solved for each Wiener polynomial chaos. To obtain the chaos coefficients in the corresponding deterministic convection-diffusion equations, we implement a semi-Lagrangian method in the finite element framework. Once this representation is computed, statistics of the numerical solution can be easily evaluated. These numerical techniques associate the geometrical flexibility of the finite element method with the ability offered by the semi-Lagrangian method to solve convection-dominated problems using time steps larger than its Eulerian counterpart. Numerical results are shown for a convection-diffusion problem driven with stochastic velocity and for an incompressible viscous flow problem with a random force. In both examples, the proposed method demonstrates its ability to better maintain the shape of the solution in the presence of uncertainties and steep gradients.  相似文献   

5.
A combination method of the Newton iteration and parallel finite element algorithm is applied for solving the steady Navier-Stokes equations under the strong uniqueness condition. This algorithm is motivated by applying the Newton iterations of m times for a nonlinear problem on a coarse grid in domain Ω and computing a linear problem on a fine grid in some subdomains Ω j ⊂Ω with j=1,…,M in a parallel environment. Then, the error estimation of the Newton iterative parallel finite element solution to the solution of the steady Navier-Stokes equations is analyzed for the large m and small H and hH. Finally, some numerical tests are made to demonstrate the the effectiveness of this algorithm.  相似文献   

6.
In this paper we present a generalization of the Fast Marching method introduced by J.A. Sethian in 1996 to solve numerically the eikonal equation. The new method, named Buffered Fast Marching (BFM), is based on a semi-Lagrangian discretization and is suitable for Hamilton-Jacobi equations modeling monotonically advancing fronts, including Hamilton-Jacobi-Bellman and Hamilton-Jacobi-Isaacs equations which arise in the framework of optimal control problems and differential games. We also show the convergence of the algorithm to the viscosity solution. Finally we present several numerical tests comparing the BFM method with other existing methods. This research was partially supported by the MIUR Project 2006 “Modellistica Numerica per il Calcolo Scientifico ed Applicazioni Avanzate” and by INRIA–Futurs and ENSTA, Paris, France.  相似文献   

7.
In this paper, we propose a spectral method for the $n$ -dimensional Navier–Stokes equations with slip boundary conditions by using divergence-free base functions. The numerical solutions fulfill the incompressibility and the physical boundary conditions automatically. Therefore, we need neither the artificial compressibility method nor the projection method. Moreover, we only have to evaluate the unknown coefficients of expansions of $n-1$ components of the velocity. These facts simplify actual computation and numerical analysis essentially, and also save computational time. As the mathematical foundation of this new approach, we establish some approximation results, with which we prove the spectral accuracy in space of the proposed algorithm. Numerical results demonstrate its high efficiency and coincide the analysis very well. The main idea, the approximation results and the techniques developed in this paper are also applicable to numerical simulations of other problems with divergence-free solutions, such as certain partial differential equations describing electro-magnetic fields.  相似文献   

8.
A p-type spectral-element method using prolate spheroidal wave functions (PSWFs) as basis functions, termed as the prolate-element method, is developed for solving partial differential equations (PDEs) on the sphere. The gridding on the sphere is based on a projection of the prolate-Gauss-Lobatto points by using the cube-sphere transform, which is free of singularity and leads to quasi-uniform grids. Various numerical results demonstrate that the proposed prolate-element method enjoys some remarkable advantages over the polynomial-based element method: (i) it can significantly relax the time step size constraint of an explicit time-marching scheme, and (ii) it can increase the accuracy and enhance the resolution.  相似文献   

9.
We show how to postprocess the approximate displacement given by the continuous Galerkin method for compressible linearly elastic materials to obtain an optimally convergent approximate stress that renders the method locally conservative. The postprocessing is extremely efficient as it requires the inversion of a symmetric, positive definite matrix whose condition number is independent of the mesh size. Although the new stress is not symmetric, its asymmetry can be controlled by a small term which is of the same order as that of the error of the approximate stress itself. The continuous Galerkin method is thus competitive with mixed methods providing stresses with similar convergence properties. The first author was supported in part by the National Science Foundation (Grant DMS-0411254) and by the University of Minnesota Supercomputing Institute.  相似文献   

10.
In this paper, we prove that the Legendre tau method has the optimal rate of convergence in L 2-norm, H 1-norm and H 2-norm for one-dimensional second-order steady differential equations with three kinds of boundary conditions and in C([0,T];L 2(I))-norm for the corresponding evolution equation with the Dirichlet boundary condition. For the generalized Burgers equation, we develop a Legendre tau-Chebyshev collocation method, which can also be optimally convergent in C([0,T];L 2(I))-norm. Finally, we give some numerical examples.  相似文献   

11.
12.
13.
The local discontinuous Galerkin (LDG) viscous flux formulation was originally developed by Cockburn and Shu for the discontinuous Galerkin setting and later extended to the spectral volume setting by Wang and his collaborators. Unlike the penalty formulations like the interior penalty and the BR2 schemes, the LDG formulation requires no length based penalizing terms and is compact. However, computational results using LDG are dependant of the orientation of the faces especially for unstructured and non uniform grids. This results in lower solution accuracy and stiffer stability constraints as shown by Kannan and Wang. In this paper, we develop a variant of the LDG, which not only retains its attractive features, but also vastly reduces its unsymmetrical nature. This variant (aptly named LDG2), displayed higher accuracy than the LDG approach and has a milder stability constraint than the original LDG formulation. In general, the 1D and the 2D numerical results are very promising and indicate that the approach has a great potential for 3D flow problems.  相似文献   

14.
A spectral collocation scheme for the three-dimensional incompressible \(({\varvec{u}},p)\) formulation of the Navier–Stokes equations, in domains \(\varOmega \) with a non-periodic boundary condition, is described. The key feature is the high order approximation, by means of a local Hermite interpolant, of a Neumann boundary condition for use in the numerical solution of the pressure Poisson system. The time updates of the velocity \({\varvec{u}}\) and pressure \(p\) are decoupled as a result of treating the pressure gradient in the momentum equation explicitly in time. The pressure update is computed from a pressure Poisson equation. Extension of the overall methodology to the Boussinesq system is also described. The uncoupling of the pressure and velocity time updates results in a highly efficient scheme that is simple to implement and well suited for simulating moderate to high Reynolds and Rayleigh number flows. Accuracy checks are presented, along with simulations of the lid-driven cavity flow and a differentially heated cavity flow, to demonstrate the scheme produces accurate three-dimensional results at a reasonable computational cost.  相似文献   

15.
We propose a pseudospectral hybrid algorithm to approximate the solution of partial differential equations (PDEs) with non-periodic boundary conditions. Most of the approximations are computed using Fourier expansions that can be efficiently obtained by fast Fourier transforms. To avoid the Gibbs phenomenon, super-Gaussian window functions are used in physical space. Near the boundaries, we use local polynomial approximations to correct the solution. We analyze the accuracy and eigenvalue stability of the method for several PDEs. The method compares favorably to traditional spectral methods, and numerical results indicate that for hyperbolic problems a time step restriction of O(1/N) is sufficient for stability. R.B. Platte’s address after December 2009: Arizona State University, Department of Mathematics and Statistics, Tempe, AZ, 85287-1804.  相似文献   

16.
A new efficient Chebyshev–Petrov–Galerkin (CPG) direct solver is presented for the second order elliptic problems in square domain where the Dirichlet and Neumann boundary conditions are considered. The CPG method is based on the orthogonality property of the kth-derivative of the Chebyshev polynomials. The algorithm differs from other spectral solvers by the high sparsity of the coefficient matrices: the stiffness and mass matrices are reduced to special banded matrices with two and four nonzero diagonals respectively. The efficiency and the spectral accuracy of CPG method have been validated.  相似文献   

17.
In this work we prove that the original (Bassi and Rebay in J Comput Phys 131:267–279, 1997) scheme (BR1) for the discretization of second order viscous terms within the discontinuous Galerkin collocation spectral element method (DGSEM) with Gauss Lobatto nodes is stable. More precisely, we prove in the first part that the BR1 scheme preserves energy stability of the skew-symmetric advection term DGSEM discretization for the linearized compressible Navier–Stokes equations (NSE). In the second part, we prove that the BR1 scheme preserves the entropy stability of the recently developed entropy stable compressible Euler DGSEM discretization of Carpenter et al. (SIAM J Sci Comput 36:B835–B867, 2014) for the non-linear compressible NSE, provided that the auxiliary gradient equations use the entropy variables. Both parts are presented for fully three-dimensional, unstructured curvilinear hexahedral grids. Although the focus of this work is on the BR1 scheme, we show that the proof naturally includes the Local DG scheme of Cockburn and Shu.  相似文献   

18.
We consider the variable coefficient Poisson equation with Dirichlet boundary conditions on irregular domains. We present numerical evidence for the accuracy of the solution and its gradients for different treatments at the interface using the Ghost Fluid Method for Poisson problems of Gibou et al. (J. Comput. Phys. 176:205–227, 2002; 202:577–601, 2005). This paper is therefore intended as a guide for those interested in using the GFM for Poisson-type problems (and by consequence diffusion-like problems and Stefan-type problems) by providing the pros and cons of the different choices for defining the ghost values and locating the interface. We found that in order to obtain second-order-accurate gradients, both a quadratic (or higher order) extrapolation for defining the ghost values and a quadratic (or higher order) interpolation for finding the interface location are required. In the case where the ghost values are defined by a linear extrapolation, the gradients of the solution converge slowly (at most first order in average) and the convergence rate oscillates, even when the interface location is defined by a quadratic interpolation. The same conclusions hold true for the combination of a quadratic extrapolation for the ghost cells and a linear interpolation. The solution is second-order accurate in all cases. Defining the ghost values with quadratic extrapolations leads to a non-symmetric linear system with a worse conditioning than that of the linear extrapolation case, for which the linear system is symmetric and better conditioned. We conclude that for problems where only the solution matters, the method described by Gibou, F., Fedkiw, R., Cheng, L.-T. and Kang, M. in (J. Comput. Phys. 176:205–227, 2002) is advantageous since the linear system that needs to be inverted is symmetric. In problems where the solution gradient is needed, such as in Stefan-type problems, higher order extrapolation schemes as described by Gibou, F. and Fedkiw, R. in (J. Comput. Phys. 202:577–601, 2005) are desirable.  相似文献   

19.
A new discrete non-reflecting boundary condition for the time-dependent Maxwell equations describing the propagation of an electromagnetic wave in an infinite homogenous lossless rectangular waveguide with perfectly conducting walls is presented. It is derived from a virtual spatial finite difference discretization of the problem on the unbounded domain. Fourier transforms are used to decouple transversal modes. A judicious combination of edge based nodal values permits us to recover a simple structure in the Laplace domain. Using this, it is possible to approximate the convolution in time by a similar fast convolution algorithm as for the standard wave equation.  相似文献   

20.
We study a tailored finite point method (TFPM) for solving the convection-diffusion-reaction equation. The solution basis functions for the TFPM are constructed for a 5 point, 7 point and 9 point stencil. Some truncation error calculations are given. Numerical tests are given on problems containing a boundary or interior layer. The tests compare TFPM with several versions of a Petrov-Galerkin finite element schemes, and suggest that TFPM gives a superior resolution of the layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号