首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 265 毫秒
1.
《功能材料》2021,52(9)
采用硫铝酸盐水泥,根据设计配比,配制了硫铝酸盐水泥基高性能混凝土,探究了硫铝酸盐水泥不同掺量(0,3%,6%和9%(质量分数))对高性能混凝土力学性能(抗压强度)和耐久性能(侵蚀性)的影响。通过XRD、SEM、热分析和力学性能分析等对硫铝酸盐水泥基高性能混凝土进行了表征。结果表明,随着硫铝酸盐水泥掺量的增加,钙矾石(AFt)的衍射峰逐渐增强,水化反应加快,高性能混凝土的结构变得更加致密;所有试样中的六方板状的Ca(OH)_2均比较厚,且呈现出片层状,整体结构的致密性比较接近,而随着硫铝酸盐水泥掺量的增加,整体的密度有变得蓬松的趋势;随着硫铝酸盐水泥掺量的增加,CH的含量增加,前期的水化放热能力得到提高,所有试样在3和28 d时的抗压强度均呈现出逐渐增大的趋势,当硫铝酸盐水泥的掺量为9%时,试样的抗压强度在28 d达到了最大值41.1 MPa,相比3 d增加了19.83%;随着硫铝酸盐水泥掺量的增加,高性能混凝土试样的强度损失逐渐增加,耐久性变差,当硫铝酸盐水泥的掺量为9%时,腐蚀90 d的强度损失率达到了最大值10.3%。  相似文献   

2.
席雅允  沈玉  刘娟红  吴瑞东  许鹏玉 《材料导报》2021,35(z2):262-267,274
针对煤气化渣大量堆存造成的环境污染和固废资源浪费的问题,本工作采用化学激发方法来激发煤气化渣活性,探究不同激发剂对煤气化渣?水泥体系抗压强度的影响.试验选取硫酸盐类、碱类和聚合盐类激发剂,确定最优激发剂种类和掺量;通过扫描电镜(SEM)、X射线衍射(XRD)和热重分析(TG)等微观手段,研究不同激发剂对煤气化渣?水泥体系水化产物的影响.结果表明,硫酸盐类最优激发剂为硫酸钠,最佳掺量为2.5%,试样3 d、28 d抗压强度增长率分别达14.3%、3.4%;碱类最优激发剂为氢氧化钙,最佳掺量为0.5%,试样3 d、28 d抗压强度增长率分别达18.4%、1.8%;聚合铝最佳掺量为2.0%,试样3 d、28 d抗压强度增长率分别达24.0%、3.3%.加入激发剂后试样早期抗压强度均得到提高,微观特征表明试样水化程度加深,且有助于钙矾石和凝胶体等水化产物的生成,提高试样强度,为煤气化渣在水泥基材料中的应用提供了理论依据.  相似文献   

3.
纳米SiO2(NS)具有极强火山灰活性、晶核作用和填充效应,因此用NS改善水泥基材料性能成为众多学者研究的热点。本课题对不同掺量的NS对轻骨料混凝土强度及耐久性的改性效果进行了研究。通过测试轻骨料混凝土的力学性能(抗压和抗折)和氯离子渗透性能及利用SEM和EDS测试分析了NS对混凝土宏观和微观结构的影响。研究结果表明:在适当的掺量下,NS能够有效地提高轻骨料混凝土的力学性能,其中28 d的抗压强度和抗折强度比空白组混凝土分别提高了21.6%和46.2%。氯离子渗透的结果表明,轻骨料混凝土的抗氯离子渗透性能随着掺量的增加而呈线性增强。混凝土界面过渡区(ITZ)也发生了显著变化,其厚度减小,形貌也更加致密。ITZ的钙硅比随着NS掺量增加而减小,说明该区域内水化产物C-S-H凝胶增多,Ca(OH)2被消耗,从而形成致密的过渡区,有利于强度提高。   相似文献   

4.
为提高建筑垃圾废砖再生利用率,采用砂浆力学测试手段研究了建筑垃圾砖粉活性和碱激发、复合激发对建筑垃圾砖粉活性的影响,并借助扫描电镜和热分析方法对建筑垃圾砖粉、建筑垃圾复合粉体材料的颗粒形貌、水化产物组成等进行了研究。结果表明:建筑垃圾砖粉活性较小,当掺量大于20%时,砂浆强度随其掺量的增加直线下降;不同碱激发剂对建筑垃圾砖粉有不同的激发效果,Ca(OH)2激发效果最好,NaOH次之,Na2SiO3·9H2O激发效果最差;复合形成的建筑垃圾复合粉体材料具有较好的活性,当其掺量不超过40%时,砂浆28d抗压强度高达50 MPa。微观分析结果表明:建筑垃圾复合粉体材料比砖粉具有更好的颗粒级配,在其水化过程中降低了稳定性较差的Ca(OH)2含量,提高了水泥石密实度,是一种经济、环保的新材料。  相似文献   

5.
用粉煤灰和铁尾矿制备高强混凝土   总被引:2,自引:0,他引:2  
以粉煤灰和铁尾矿为主要原料制备高强混凝土,用X射线衍射(XRD)和扫描电镜(SEM)分析材料的水化产物和微观形貌,研究了铁尾矿掺量、水胶比、高效减水剂用量对高强混凝土力学性能的影响。结果表明,混凝土的抗压强度为100.1 MPa,抗折强度为20.6 MPa,固体废弃物掺量达86.4%;在水化过程中大量C-S-H凝胶和钙矾石的生成为细骨料混凝土提供了早期强度,火山灰活性反应对Ca(OH)2的消耗是混凝土后期强度持续提高的主要原因。  相似文献   

6.
为解决钢渣微粉在水泥基复合材料中掺配比例较低的问题,采用力学性能测试、 XRD、 SEM、 FTIR等方法研究激发剂种类、掺量等对钢渣微粉-水泥胶凝材料力学强度和微观结构的影响。结果表明:碱性激发剂可提高钢渣微粉水化速度、增大复合胶凝材料抗压强度,但激发剂种类对胶凝材料激发效果具有差异性;碳酸钠与三乙醇胺复合激发后效果显著,3、 7、 28 d龄期的最佳强度与未掺加激发剂实验组的相比分别提高47%、 72%、 69%;激发剂对复合胶凝材料浆体水化产物种类没有影响;三乙醇胺具有悬浮稳定效应以及降低溶液表面张力的能力,与碳酸钠的强腐蚀效应作用在钢渣微粉水泥体系中协同强化水化反应,使复合胶凝体系中生成更多的水化产物并且相互交织成复杂密实的空间结构。  相似文献   

7.
改性硫氧镁水泥混凝土作为一种新型耐腐蚀材料,其具有很高的推广应用价值,对不同配比、不同外加剂含量下的改性硫氧镁水泥胶凝试样进行强度测试,结果表明:采用50%活性含量的轻烧氧化镁,柠檬酸对配比6-20和9-20的改性硫氧镁水泥试样流动度改性效果明显;配比6-20改性硫氧镁水泥试样28 d抗折、抗压强度都随着外加剂掺量增加而增加;小于2%的柠檬酸掺量对配比9-20改性硫氧镁水泥试样抗压强度改性作用巨大;掺4%的柠檬酸时,9-20配比的改性硫氧镁水泥试样具有最高的28 d抗折强度和较高的折压比;根据28 d强度分析,针对9-20配比,活性含量50%、60%的轻烧氧化镁,最佳柠檬酸掺量分别为3%~4%与1.2%。  相似文献   

8.
通过宏观力学性能测试、X射线衍射分析(XRD)、示差扫描量热分析(DSC)等手段对煅烧煤矸石-Ca-(OH)2-H2O体系在不同类型、不同掺量的早强剂作用下,体系的力学性能、组成特征、Ca(OH)2的含量及火山灰反应过程中Ca(OH)2的消耗量等进行了系统研究.结果表明:早强剂Na2SO4、CaCl2·2H2O对煅烧煤矸石的火山灰反应均有明显的激发作用,Na2SO4的激发效果优于CaCl2·2H2O,其适宜掺量在4%左右.  相似文献   

9.
本文通过实验手段,研究了改性石膏对磷渣混凝土强度的影响,并结合XRD、SEM分析改性石膏-磷渣混凝土水化产物的结晶形态和矿物组成。结果表明:在磷渣粉掺量相同的情况下,加入天然石膏、120℃烧石膏、550℃烧石膏激发剂后,水化产物主要是水化硅酸钙、钙矾石,因此,磷渣混凝土抗压强度有了不同程度的提高,其中外掺6%的550℃烧石膏作激发剂的磷渣混凝土抗压强度最大。  相似文献   

10.
碱激发改性矿粉/砒砂岩复合材料   总被引:3,自引:0,他引:3       下载免费PDF全文
为了实现砒砂岩的资源化利用,首先,通过碱激发法并掺入适量的矿粉将砒砂岩转变成了力学性能较好的改性矿粉/砒砂岩复合材料;然后,系统地研究了矿粉、碱激发剂掺量和龄期对改性矿粉/砒砂岩复合材料抗压强度和软化系数的影响;最后,利用SEM/EDS、FTIR和XRD分析了改性矿粉/砒砂岩复合材料的水化进程和碳化进程。结果表明:改性矿粉/砒砂岩复合材料的90d抗压强度和软化系数分别达到46.0 MPa和0.94,完全满足工程应用的需求;改性矿粉/砒砂岩复合材料主要的水化产物为C-S-H凝胶和地聚物胶体,且C-S-H凝胶存在比较严重的碳化现象;当矿粉和NaOH的掺量分别为20.0wt%和1.5wt%时,C-S-H凝胶的28d碳化率达30.1%,且碳化率随矿粉及NaOH掺量的增加而减小,但碳化率对强度几乎没有影响。改性矿粉/砒砂岩复合材料拥有良好的力学性能及耐水性。   相似文献   

11.
借助DSC-TG、扫描电镜和压汞实验,并结合混凝土宏观性能实验,研究了建筑垃圾复合粉体材料对C30混凝土力学强度及抗冻性能的影响机理。结果表明:建筑垃圾复合粉体材料掺量为30%时,C30混凝土强度及抗冻性能最优;中低盐溶液浓度时,试件更容易发生盐冻腐蚀破坏。建筑垃圾复合粉体材料由于其填充效应及火山灰效应减少了取向性较强的Ca(OH)_2含量,生成性能较优、微观结构较为致密的低碱度水化硅酸钙凝胶,使得混凝土内部较为致密,孔结构和孔级配趋向合理,宏观上表现为混凝土强度及抗冻性能的提高。  相似文献   

12.
The behavior of chromium during the production of cement clinker, during the hydration of cement and during the leaching of cement mortars was investigated. The microstructures of clinker and mortar properties were investigated using free lime, XRD, SEM/EDS, and TG/DTA techniques. Chromium was found to be incorporated in the clinker phase. The formation of new chromium compounds such as Ca(6)Al(4)Cr(2)O(15), Ca(5)Cr(3)O(12), Ca(5)Cr(2)SiO(12), and CaCr(2)O(7), with chromium oxidation states of +3, +4.6, +5, and +6, respectively, was detected. After the hydration process, additional chromium compounds were identified in the mortar matrix, including Ca(5)(CrO(4))(3)OH, CaCrO(4)·2H(2)O, and Al(2)(OH)(4)CrO(4), with chromium oxidation states of +4.6, +6, and +6, respectively. Additionally, some species of chromium, such as Cr(3+) from Ca(6)Al(4)Cr(2)O(15) and Cr(6+) from CaCr(2)O(7), CaCrO(4)·2H(2)O, and Al(2)(OH)(4)CrO(4), were leached during leaching tests, whereas other species remained in the mortar. The concentrations of chromium that leached from the mortar following U.S. EPA Method 1311 and EA NEN 7375:2004 leaching tests were higher than limits set by the U.S. EPA and the Environment Agency of England and Wales related to hazardous waste disposal in landfills. Thus, waste containing chromium should not be allowed to mix with raw materials in the cement manufacturing process.  相似文献   

13.
The workability and mechanical properties of mortar containing shredded automobile and truck tyres were evaluated. Two different shapes of rubber particles were used as constituents of mortar: (1) granules about 2 mm in diameter, and (2) shreds having two sizes which were, nominally, 5.5 mm×1.2 mm and 10.8 mm×1.8 mm (length×diameter). As expected, the geometry of the rubber particles influenced the fracture behaviour of rubber-containing mortar. The addition of rubber led to a decrease in flexural strength and plastic shrinkage cracking of mortar. The crack width and crack length due to plastic shrinkage were reduced for mortar containing the 10.8×1.8 mm rubber shreds compared with a mortar without shreds. The rheological properties of the mortar containing rubber shreds were comparable to those of a mortar without rubber and yielded lower plastic viscosity than a mortar containing 25.4 mm×15 m (length×diameter) polypropylene fibres. The alkaline stability of rubber in mortar was also evaluated by immersing rubber shreds in NaOH and Ca(OH)2 solutions for 4 mon and the results showed that there is less than 20% change in stress and strain value. The findings of the research suggest that automobile and truck tyres can be recycled by shredding and incorporating them into mortar and probably concrete for certain infrastructural applications. © 1998 Chapman & Hall  相似文献   

14.
This study discusses the thin film transistor liquid crystal display (TFT-LCD) waste glass-blended cement (WGBC) pastes. It presents their compressive strength, their products of hydration and solid silicates changes. The samples were subjected to Fourier transformation infrared spectroscopy, differential thermal and thermo-gravimetric analysis and (29)Si magnetic angle spinning/nuclear magnetic resonance. The experimental XRD results demonstrated the speciation of the TFT-LCD waste glass, and that the major component was SiO(2). At 40% substitution of TFT-LCD waste glass, at 28 days and 56 days, the compressive strength was 35% and 30% lower, respectively, than that of the Portland cement paste. The intensity of the Ca(OH)(2) band at 3,710 cm(-1) in the 56-day hydrated products of the WGBC pastes that contain TFT-LCD waste glass exhibit comparatively weak peaks suggesting that much Ca(OH)(2) during hydration was consumed. Later, the CSH contents of the WGBC pastes increased, revealing that liberated Ca(OH)(2) was consumed in pozzolanic reactions.  相似文献   

15.
Micronized biomass silica (MBS) is an agricultural waste obtained from controlled burning of rice husk and grind in jar mill. This paper investigates the optimum percentage of MBS for the replacement of cement by conducting several experiments with the blended cement paste and mortar with MBS percentages varying from 0, 4, 8 and 12. In addition, hydration products were also investigated in the blended cement paste through X-ray diffraction. Due to the pozzolanic reaction of MBS with cement hydrates, secondary calcium silicate hydrates (CSH) were formed and also MBS which has a potential to reduce the intensity of Ca(OH)2 exhibited improved properties. The experimental results showed that the optimum percentage of MBS for the replacement of cement was 8% for the materials used in this study. The mechanical and durability properties of recycled aggregate concrete by replacing cement with 8% MBS were also carried out and it was found that the concrete exhibited improved properties. There by, using MBS one can overcome the drawbacks of recycled aggregate concrete as it acts as a supplementary cementitious material. Thus, by combining recycled concrete aggregate with MBS will achieve sustainable development.  相似文献   

16.
The aim of this study was to investigate the effect of a high volume of roof-tile waste coarse aggregate (5–13 mm) as an internal curing agent on the compressive strength, modulus of elasticity, pore structure, and hydration and pozzolanic reactions in paste of fly-ash concrete with a low water-to-binder ratio of 0.30. The fly-ash concrete specimens in which the replacement ratio of cement by Class-F fly ash was 40% by mass and that of normal coarse aggregate by roof-tile waste aggregate was 40% by volume, were cured up to 728 days. Internal curing with roof-tile waste aggregate increased the compressive strength of the fly-ash concrete by 8.4–16.5% and decreased the modulus of elasticity by 4.9–12.8%. The use of a high volume of waste aggregate decreased the volume of the capillary pores in the 0.01–10 µm range and the volume proportion of the 0.02–0.33-µm pores after 28 days, but increased the volume proportion of 0.003–0.02-µm pores slightly at 7 days and significantly up to 728 days, and the consumption of Ca(OH)2 in the fly-ash concrete. This roof-tile waste aggregate can be used as an internal water reservoir to increase the compressive strength and to improve the pore structure of concrete with a high-volume (40%) replacement of Class-F fly ash.  相似文献   

17.
This study aims to examine the mechanical properties and microstructures of steel/iron slag blended mortar (SISBM), which contains two by-products of the steel and iron industries: steel slag (basic oxygen furnace slag, BOFS) and iron slag (blast furnace slag, BFS). Test results indicate that steel slag will have effective hydration reactions with iron slag and contribute strength. The optimal mixing ratio of steel to iron slags was 3:7 (by weight), and the compressive strength was about 83.59% compared with that of ordinary Portland cement mortar (OPM). The strength development was similar to that of OPM and the strength increased as the curing period increased. The X-ray diffraction analysis results implied that the main products of hydration could be C–S–H, C–A–S–H, CaO–MgO–Al2O3–SiO2, Fe0.974O, and C4AF. The scanning electron microscope images indicated that the distribution of Ca(OH)2 and CaCO3 increased as the inclusion of steel slag increased, perhaps resulting from insufficient reactions between BFS and Ca(OH)2 and f-CaO due to excessive BOFS. In addition, the results indicated that the density of OPM was superior to that of SISBM. This may be the reason for lower strength of SISBM compared to OPM.  相似文献   

18.
The material properties of new sulphonated phenolic resin (SP) reinforced cement mortars have been investigated. SP was found to promote the dispersion of cement particles and to interact with Ca(OH)2. As a result, the resulting mortars exhibit better workability, more compact structure and higher compressive strength than plain mortars. The mortar with 1 wt% SP present after 28 days curing exhibits a compressive strength of 66MPa, which is about 18% higher than that of plain mortar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号