首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
In this study, we investigated the crystallization behavior of an Al80Fe10Ti5Ni3B2 amorphous alloy (obtained by mechanical alloying) using X-ray diffraction (XRD), transition electron microscopy (TEM), and differential thermal analysis (DTA) techniques. The obtained results show that an amorphous phase formed during mechanical alloying (for 40 h) of the Al-10%Fe-5%Ti-3%Ni-2%B powder mixture. It was found that the Al80Fe10Ti5Ni3B2 amorphous alloy exhibits one-stage crystallization when heated (amorphous to Al13Fe4, Al5Fe2 and AlFe intermetallic phases). The activation energy for the crystallization, evaluated from the Kissinger equation, was about 242 ± 5 kJ/mol. We also discuss kinetic parameters such as the Avarmi exponent and reaction order (n). The results show that only one three-dimensional diffusion-controlled growth mechanism was working during the amorphous-glass process of the investigated glass.  相似文献   

2.
The crystallization behavior of melt-spun A85Y10Fe5−xNx (x=0, 2.5, 5) amorphous alloys has been investigated by a combination of differential scanning calorimetry (DSC) and x-ray diffractometry (XRD). XRD traces of these alloys consisted of a single broad peak corresponding to fully amorphous structure. Continuous DSC results showed that, the first crystallization peak temperature of Al85Y10Fe5 amorphous alloy was about 60 K higher than that of Al85Y10Ni5. The activation energies for the first crystallization peak increased from 210 kJ/mol for Al85Y10Ni5 to 280 for Al85Y10Fe5. These results indicate that 5 at.% substitutions Ni by Fe increases the stability of the amorphous phase.  相似文献   

3.
An amorphization process in (Cu49Zr45−xAl6+x)100−y−zNiyTiz (x = 1, y, z = 0; 5; 10) induced by ball-milling is reported in the present work. The aim was investigation of the effect of Ni and Ti addition to Cu49Zr45Al6 and Cu49Zr44Al7 based alloys as well as type of initial phases on the amorphization processes. Also the milling time sufficient for obtaining fully amorphous state was determined. The entire milling process lasted 25 h. Drastic structural changes were observed in each alloy after first 5 h of milling. In most cases, after 15 h of milling the powders had fully amorphous structure according to XRD except for those ones, where TEM revealed a few nanosized crystalline particles in the amorphous matrix. In (Cu49Zr45Al6)80Ni10Ti10 alloy the amorphization process took place after 12 h of milling and the amorphous state was stable up to 25 h of milling. In the case of (Cu49Zr44Al7)80Ni10Ti10 alloy the powders have fully amorphous structure between 12 h and 15 h of milling.  相似文献   

4.
The microstructures and crystallization behavior of Ti–47 at% Ni–3 at% Fe shape memory alloy wire under the condition of severe cold drawing at room temperature and different post-deformation annealing processes were intensively investigated using transmission electron microscope(TEM) and differential scanning calorimetry(DSC). It is indicated that the amorphous phase is dominant in the Ti50Ni47Fe3 wire after the cold drawing of 78 % areal reduction. The critical temperature for recrystalization is determined at about 300 °C. The average grain size grows from 7 up to 125 nm when annealing temperature rises from300 to 500 °C. Post-deformation annealing process exerts significant influence on the crystallization temperature which climbs up with the increase of annealing temperature.  相似文献   

5.
Three novel NiTiFeAlCu high-entropy alloys, which consist of nano-precipitates with face-centered cubic structure and matrix with body-centered cubic structure, were fabricated to investigate microstructures and mechanical properties. With the increase in Ni and Ti contents, the strength of NiTiFeAlCu alloy is enhanced, while the plasticity of NiTiFeAlCu alloy is lowered. Plenty of dislocations can be observed in the Ni32Ti32Fe12Al12Cu12 high-entropy alloy. The size of nano-precipitates decreases with the increase in Ni and Ti contents, while lattice distortion becomes more and more severe with the increase in Ni and Ti contents. The existence of nano-precipitates, dislocations and lattice distortion is responsible for the increase in the strength of NiTiFeAlCu alloy, but it has an adverse influence on the plasticity of NiTiFeAlCu alloy. Ni20Ti20Fe20Al20Cu20 alloy exhibits the substantial ability of plastic deformation and a characteristic of steady flow at 850 and 1000 °C. This phenomenon is attributed to a competition between the increase in the dislocation density induced by plastic strain and the decrease in the dislocation density due to the dynamic recrystallization.  相似文献   

6.
《Intermetallics》2007,15(2):211-224
Electron irradiation induced phase transformation behavior of an amorphous phase in Zr66.7Ni33.3 alloy, and an amorphous phase or supercooled liquid in Zr60Al15Ni25 alloy was investigated. The amorphous phase could not maintain the original glassy structure under electron irradiation at 298 K, and f.c.c.-solid solution precipitated under electron irradiation in both alloys. The precipitation of C16-Zr2Ni, big-cube (metastable f.c.c.-based Zr2Ni intermetallic compound), Zr6Al2Ni and Zr5AlNi4 crystalline phases from an amorphous phase was not observed during electron irradiation induced crystallization. The amorphous phase in Zr60Al15Ni25 metallic glass shows the highest phase stability against electron irradiation induced crystallization among Zr66.7Cu33.3, Zr66.7Ni33.3, Zr65Al7.5Ni27.5, Zr60Al15Ni25 and Zr65Al7.5Ni10Cu17.5 alloys. In Zr60Al15Ni25 metallic glass, electron irradiation promoted the precipitation of f.c.c.-solid solution and Zr6Al2Ni crystalline phases from the supercooled liquid.  相似文献   

7.
The common Ti44Ni47Nb9 and Ti50Ni40Cu10 ternary shape memory alloys were produced by sintering techniques and the microstructure, phase structure and phase transformation behaviour were investigated. A combination of pre-alloyed binary TiNi powder and elemental Nb, Ni and Cu, Ti powders, respectively, were used. In contrast to the use of pre-alloyed ternary powders, which have to be produced in each new composition, a higher flexibility in the alloy composition becomes possible. In case of the Ti44Ni47Nb9 alloy, liquid phase sintering was done to obtain the eutectic phase structure known from cast material. In case of the Ti50Ni40Cu10 alloy, the pore size and porosity can be improved by choosing a two-step sintering process, as a eutectic melt between Ti and Cu is formed at low temperatures which influences the sintering behaviour. Controlling the impurity contents and the resulting secondary phases is necessary for both alloys in the same way as for binary TiNi alloys.  相似文献   

8.
层叠Ni/Ti热扩散形成金属间化合物的规律   总被引:1,自引:0,他引:1       下载免费PDF全文
选择Ni和Ti粉末及其机械合金化粉末制备Ni/Ti扩散偶,利用扫描电镜和X射线衍射等手段研究了Ni/Ti扩散偶在固相热处理作用下金属间化合物的形成及生长规律.随着热处理温度的提高,Ni3Ti,Ti2Ni和NiTi金属间化合物的数量增加明显;随热处理保温时间的增加,NiTi金属间化合物呈抛物线规律生长,而对Ni3Ti和Ti2Ni的生长影响不大.结果表明,金属间化合物在形成过程中,Ni3Ti和Ti2Ni优先形成,达到一定厚度后,NiTi金属间化合物开始形成并快速增长.  相似文献   

9.
《Intermetallics》2006,14(3):255-259
High-strength nonequilibrium hypereutectic bulk alloys were obtained recently in the Ti–Fe and Ti–Fe–Co systems by arc-melting. Following these results, the influences of the additional alloying elements (V, Ni, Cu, Sn, B) on high strength hypereutectic Ti–Fe–Co bulk alloys are studied and analyzed in the present work. The structure of the hypereutectic quaternary Ti67Fe14Co14Sn5, Ti67Fe14Co14V5, Ti70Fe17Co7Cu6, Ti70Fe17Co7Ni6, and Ti69.4Fe14.8Co14.8B1 alloys obtained in the form of arc-melted ingots of about 20–30 mm diameter and 10–15 mm height was studied by X-ray diffractometry and scanning electron microscopy. The mechanical properties were tested by an Instron-type machine. Ti67Fe14Co14Sn5 alloy exhibits a high ultimate compressive strength of 1830 MPa and a large plastic strain of 24% which exceeds the ductility values obtained for Ti–Fe and Ti–Fe–Co alloys. The addition of Sn causes formation of a relatively rough eutectic structure which is preferable for the high strength hypereutectic alloys. Rough primary dendrites and eutectic rods of the cP2 intermetallic phase act as efficient barriers for shear strain and cracks propagation while fine eutectic rods of submicron size are quite effortlessly cut by deformation bands and cracks.  相似文献   

10.
《Intermetallics》2007,15(8):1013-1019
The phase formation and crystallization kinetics during the thermal treatment of amorphous Zr60Al15Ni25 alloy were investigated by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). By lowering the isothermal annealing temperatures, it is revealed that the crystallization of the amorphous Zr60Al15Ni25 alloy consists of a primary transformation followed by a polymorphic transformation, corresponding to the precipitations of hexagonal Zr6Al2Ni and the Zr5AlNi4 with a U3Si2-typed superstructure. The primary phase being Zr6Al2Ni rather than Zr5AlNi4 in the crystallization is because the latter has a complex structure and its formation requires the diffusion of Al and Zr atoms on a large scale.  相似文献   

11.
In the present investigation the effect of Fe substitution in Ti51Ni49 alloy has been studied. The alloys were synthesized through radio frequency induction melting. The alloy was characterized through X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Mössbauer spectroscopy and positron annihilation techniques. It was found that the Fe substitution stabilized the TiNi type cubic (a = 2.998 Å) phase. The microstructure and presence of the oxide phase in Ti51Ni45Fe4 alloy have been investigated by scanning electron microscopy. The positron annihilation measurements indicated a similar bulk electron density in both the as-cast and annealed (1000 °C for 30 h) alloys, typically like that of bulk Ti. Mössbauer spectroscopy studies of as-cast and annealed iron substituted samples showed regions in the samples where nuclear Zeeman splitting of Fe levels occurred and an oxide phase was found to be present in as cast Ti51Ni45Fe4 alloy, while annealed sample indicated the presence of bcc iron phase.  相似文献   

12.
《Intermetallics》2000,8(5-6):481-485
The crystallization kinetics of Zr65Ni10Cu17.5Al7.5 (alloy I) and Zr52.5Ni14.6Cu17.9Al10Ti5 (alloy II) are investigated. Two-stage crystallization takes place during continuous heating of the glassy alloy I, resulting in the transformation of the glass to the metastable α-Zr-solid solution and Zr-base quasicrystals with an activation energy of 309 KJ/mol in the first-stage and the formation of Zr2Cu compound and the stable α-Zr-solid solution with an activation energy of 227 KJ/mol in the second-stage. For alloy II, one-stage crystallization with an activation energy of 333 KJ/mol occurs during continuous heating of the glass, resulting in the formation of Zr3Al and α-(Zr,Ti)-solid solution. Based on the DSC data and calculations, both the alloys go through with three stages of crystallization mechanism during isothermal annealing, i.e. (1) surface nucleation and growth, (2) three-dimensional nucleation and growth, and (3) crystal growth. The TEM observation on Zr52.5Ni14.6Cu17.9Al10Ti5 alloy is in good agreement with the calculations.  相似文献   

13.
Raney-type Ni precursor alloys containing 75 at.% Al and doped with 0, 0.75, 1.5 and 3.0 at.% Ti have been produced by a gas atomization process. The resulting powders have been classified by size fraction with subsequent investigation by powder XRD, SEM and EDX analysis. The undoped powders contain, as expected, the phases Ni2Al3, NiAl3 and an Al-eutectic. The Ti-doped powders contain an additional phase with the TiAl3 DO22 crystal structure. However, quantitative analysis of the XRD results indicate a far greater fraction of the TiAl3 phase is present than could be accounted for by a simple mass balance on Ti. This appears to be a (TixNi1−x)Al3 phase in which higher cooling rates favour small x (low Ti-site occupancy by Ti atoms). SEM and EDX analysis reveal that virtually all the available Ti is contained within the TiAl3 phase, with negligible Ti dissolved in either the Ni2Al3 or NiAl3 phases.  相似文献   

14.
The effects of Ce-substitution for Al in the Al90−xFe5Ni5Cex (x = 0, 2, 5, 7, 8, 9, and 10) system on the mechanical alloying process were investigated. The structural evolution in these powders was characterized by scanning electron microscopy, differential thermal analysis and X-ray diffraction techniques. The compositional range of amorphous forming was obtained and it extended from 5 to 9 at.% Ce. With increasing Ce content, the crystallization temperature of amorphous alloys increases. The crystallization temperature versus concentration of Ce was reproduced well by applying an extension of a relationship between the crystallization temperature and the vacancy formation energy of constituents with smaller atomic radius. The crystallization product phases were analyzed by XRD after annealing the milled powders at temperature over the crystallization temperature.  相似文献   

15.
This article reports the effect of silicon (Si) addition upon the crystallization behavior and mechanical properties of an amorphous AlYNi alloy. An amount of 1 at.% Si was added to a base alloy of Al85Y5Ni10 either by substitution for yttrium (Y) to form Al85Y4Ni10Si1, or by substitution for nickel (Ni) to form Al85Y5Ni9Si1. Differential scanning calorimetry (DSC) of all three alloys showed three exothermic peaks. Comparing the peak temperature for the first exothermic peak, a significant shift occurs toward the lower temperature. This indicates that 1 at.% substitutions of Y or Ni by Si decreases the stability of the amorphous phase. DSC study of these amorphous alloys during isothermal annealing at temperatures about 5–15 K lower than their first crystallization peaks showed that the formation of α-Al nanocrystals via primary crystallization occurred without an incubation period. The Avrami time exponent (n) of the primary crystallization from the amorphous structure was determined to be 1.00–1.16 using the Johnson-Mehl-Avrami (JMA) analysis. This suggested a diffusion-controlled growth without nucleation. However, a DSC study of these amorphous alloys during isothermal annealing at higher temperatures between 585 and 605 K showed a clear incubation period during the formation of the Al3Ni and Al3Y intermetallic phases. An n value of 3.00–3.45 was determined using JMA analysis. This suggested that the transformation reaction involved a decreasing nucleation rate and interface-controlled growth behavior. The tensile strength σf and Vickers hardness for these amorphous alloys are in the range 1050–1250 MPa and 380–398 diamond pyramid hardness number (1 diamond pyramid hardness number=1 kg/mm2=9.8 MPa), respectively.  相似文献   

16.
The crystallization behavior of Zr55Cu30Al10Ni5 bulk amorphous alloy during laser solid forming (LSF) was analyzed. Since laser surface remelting (LSM) is a key process for the LSF, the crystallization behavior of as-cast Zr55Cu30Al10Ni5 bulk metallic glasses (BMGs) during LSM was also investigated. It was found that the amorphous state of the as-cast BMGs was maintained when they were repeatedly remelted four times in a single-trace LSM, and as for the LSF of Zr55Cu30Al10Ni5 bulk amorphous alloy, the crystallization primarily occurred in the HAZ between the adjacent traces and layers after the two layers were deposited. The as-deposited microstructure exhibited a series of phase evolutions from the molten pool to the HAZ as follows: the amorphous → NiZr2–type nanocrystal + amorphous → NiZr2–type equiaxed dendrite + amorphous → Cu10Zr7–type dendrite + NiZr2–type nanocrystal. Among these microstructural patterns, the NiZr2–type nanocrystals and equiaxed dendrites primarily formed from the rapid solidification of the remelted liquid in the laser processing process, and the Cu10Zr7–type dendrites in the HAZ primarily formed by the crystallization of pre-existed nuclei in the already-deposited amorphous substrate.  相似文献   

17.
为解决铝镁合金表面耐磨性差的问题,利用机械球磨法和PVA造粒技术制备复合陶瓷粉末,采用等离子喷涂技术在XGFH-3铝镁合金表面制备了反应复相陶瓷涂层,利用扫描电镜(SEM)、X射线衍射仪(XRD)分析了喷涂复合粉末和复相陶瓷涂层的形貌及组成.结果表明,复合粉末随着球磨时间的延长明显趋于扁平化和均匀化,并且生成了Al3Ti,Ni4Ti3等新相.而在喷涂过程中Al3Ti和Ni4Ti3中间相又会消失,涂层中出现了MgAl2O4和Ti5Si3等新相,基体和涂层之间有元素扩散,这使得涂层有良好的结合强度.  相似文献   

18.
The Zr55Cu30Al10Ni5 bulk metallic glasses (BMGs) were prepared using laser solid forming (LSF) process from the plasma rotating electrode process (PREP) powder. The effect of the powder size on the crystallization behavior of the remelted zone (RZ) and heat affected zone (HAZ) was investigated. It was found that the as-prepared powders were composed of the amorphous phase and Al5Ni3Zr2-type phase. The RZ mainly kept the amorphous state after LSF. The residual Al5Ni3Zr2-type phase could be observed in RZ only if the powder size was larger than 106 μm. Meanwhile, the NiZr2-type nanocrystals at the boundary of RZ primarily formed from the solidification of remelted liquid. With the increase of the powder size, the lower overheating temperature and shorter existing time of the molten pool enhanced the heredity of Al5Ni3Zr2 clusters and other intermetallic clusters in remelted alloy melt, which decreased the thermal stability of the already-deposited layer. The volume fraction of crystallization in the deposit increased with the increase in powder size. There was no crystallization occurred in the HAZ between the adjacent tracks and layers for the deposit prepared by the powder with the size range of 53–75 μm. However, the wide crystalline band with Al5Ni3Zr2-type faceted phase, CuZr-type dendrite, CuZr2-type spherulite and NiZr2-type nanocrystal were observed in the entire HAZ for the deposit prepared by the powder with the size range of 106–150 μm. The finer powder was benefit to prepare the BMGs by LSF.  相似文献   

19.
Nanocrystalline Al–Fe alloys containing 60–85 at.% Al were produced by consolidation of mechanically alloyed nanocrystalline or amorphous (Al85Fe15 composition) powders at 1000 °C under a pressure of 7.7 GPa. The hardness of the alloys varied between 5.8 and 9.5 GPa, depending on the Al content. The specific strength, calculated using an approximation of the yield strength according to the Tabor relation, was between 544 and 714 kNm/kg. Based on the results obtained, we infer that application of high pressure affected crystallisation of amorphous Al85Fe15 alloy, influencing the phase composition of the crystallisation product, and phase changes in nanocrystalline Al80Fe20 alloy, inhibiting them.  相似文献   

20.

Al-5Ti-B and Al-5Ti-B-Gd master alloy refiners were fabricated by fluorine salt casting method. The microstructure and phase constitution of the master alloys were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The results show that Al-Ti-B alloy refiner consists of Al3Ti phase and TiB2 phase. After Gd is introduced into the intermediate alloy, Ti2Al20Gd phase appears in the alloy, the size of Al3Ti is significantly reduced, and Ti-Al-Gd phase is found in the edge of Al3Ti phase. At the same time, some independent Ti-Al-Gd phases appear in local areas, which are Ti2Al20Gd phase determined by micro-area electron diffraction analysis. Analysis and calculation results of the high-resolution images of the Ti2Al20Gd/Al structure show that there is no other compound at the junction between the Ti2Al20Gd phase and Al, and Ti2Al20Gd phase has a great difference in atomic space with the α-Al, which cannot be directly used as heterogeneous nucleus. But, after being decomposed in the aluminum melt, the Ti2Al20Gd phase can promote the refinement effect of the refiner. In the Al-Ti-B-Gd master alloy, there are many dispersed Al3Ti particles with a size of less than 1 µm, which can promote the Al-5Ti-B refining effect.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号