共查询到17条相似文献,搜索用时 62 毫秒
1.
结合几种现有的人脸识别特征提取算法,先对人脸图像进行小波分解去噪;然后通过离散余弦变换对低频分量作进一步特征提取和压缩,保留人脸图像中对光照、姿态、表情变化不敏感的识别信息;接着利用PCA和LDA相结合得到最终的识别特征,最后采用欧式距离和最近邻分类器识别人脸。实验采用ORL标准人脸库验证了这种组合的有效性。 相似文献
2.
本文结合几种现有的人脸识别特征提取算法,先对人脸图像进行小波分解去噪;然后通过离散余弦变换对低频分量作进一步特征提取和压缩,保留人脸图像中对光照、姿态、表情变化不敏感的识别信息;接着利用PCA和LDA相结合得到最终的识别特征;最后采用欧式距离和最近邻分类器识别人脸。实验采用ORL标准人脸库验证了这种组合的有效性。 相似文献
3.
4.
5.
6.
7.
一种新颖的基于LDA的人脸识别方法 总被引:4,自引:0,他引:4
提出一种基于离散余弦变换(DCT)与.LDA相结合的人脸识别方法,首先利用DCT将图像进行降维,然后在低维空间中利用LDA进行特征提取。利用ORL人脸数据库和我们上海交通大学图像处理与模式识别研究所的人脸数据库进行测试,实验结果分别得到了97.5%和92.6%的正确识别率,表明它可以和其他方法相比较。 相似文献
8.
讨论了基于离散余弦变换的数字水印算法原理及其具体步骤,并通过仿真实验实现了数字水印的嵌入和提取,验证了算法的可行性。 相似文献
9.
10.
提出了一种基于图片分割的人脸特征提取方法,该方法利用二维离散余弦变换对每个子图进行分解,并提取其中最具代表性的系数作为该子图的特征,文中构造了一对多的支持向量机作为分类器来识别不同的人脸。基于ORL人脸数据库对算法性能进行了模拟,实验结果表明,所提出的算法实现简单,并具有较好的性能。 相似文献
11.
特征提取和分类器设计是人脸识别算法中的两个关键问题。提出一种基于二次小波变换、PCA算法与BP神经网络的人脸识别算法。该算法采用二次小波变换与PCA相结合的算法提取人脸图像的主要特征,并运用加入动量项的改进BP神经网络算法进行人脸图像分类识别。在MATLAB环境下,利用ORL人脸图像数据库进行了仿真实验,实验结果表明,该算法实现简单、识别速度快、识别率较高。 相似文献
12.
针对现有的多数人脸识别算法在单训练样本时识 别性能并不理想这一问题,提出一种基于Fourier-Mellin变换的频域不 变性以及时域不变性的特征提取算法。首先,采用图像亮度作为原始特征,将对图像亮度标 准化以改善光照变化,通过应用2D小波变换降维来管理频域不变量的复杂度;然后,为进一 步改进识别性能,根据分析的Fourier-Mellien变换(AFMT) 以及正交Fourier-Mellin矩(OFMM)法不变量的特征,将两种算法混合,进行特征提取; 最后,利用分值标准化度量频域不变量与时域不变量,并存储到一个特征向量中用于分类。 通过最近邻分类器(NNC)和相关性系 数法(CCM)进行分类和融合。通过在YALE与ORL人脸数据库上进行了大量实验的结果表明, 本文提出方法的性能要优于传统的人脸识别算法。 相似文献
13.
针对人脸识别中的特征提取问题,提出一种新的基于Gabor的特征提取算法,利用Gabor小波变换良好的提取区分能力和LDA所具有的判别性优势来进行特征提取。首先利用Gabor小波变换来提取人脸特征。然后对得到的高维特征采用PCA进行初次降维,再利用LDA实现再次降维,得到最终的特征向量。在ORL和YALE人脸库上的实验验证了该算法的有效性。 相似文献
14.
为了适应当今各企事业单位考勤业务需求,设计了一款嵌入式人脸识别考勤系统,并详细设计分析了该系统的实现方法。从硬件角度方面,利用ARM芯片的优势,对本文设计的嵌入式系统整体方案、硬件选择和开发环境的搭建等进行分析;另一方面,从软件的角度,依据系统功能进行设计,并提出一种基于PCA的人脸识别方法。最终通过系统性能测试,验证该方案的可行性。 相似文献
15.
融合奇异值分解和线性鉴别分析的人脸识别算法 总被引:6,自引:0,他引:6
本文提出了奇异值分解(SVD)和线性鉴别分析(LDA)相结合的人脸识别算法。理论上,当两种数据或分类器具有一定的独立性或互补性时,数据融合或分类器融合才能改善识别率。SVD和LDA之间有着明显的互补之处,LDA在fisher准则下能最大限度地把不同的类别区分开来,但作为一种子空间方法,LDA敏感于位移、旋转等几何变换。而作为一种代数特征提取方法的SVD则具有位移、旋转不变性等优点。因此,将这两种方法相结合就有可能提高分类性能(好于单独的SVD方法和单独的LDA方法)。在ORL数据库上的实验表明,SVD和LDA相融合的识别方法的确提高了人脸识别率。 相似文献
16.
融合奇异值分解和主分量分析的人脸识别算法 总被引:7,自引:0,他引:7
提出了奇异值分解(SVD)和主分量分析(PCA)相结合的人脸识别算法。理论上,当两种数据或分类器具有一定的独立性或互补性时,数据融合或分类器融合才能改善识别率。SVD和PCA之间有着明显的互补之处。PCA在图像表示上是最佳的(在均方差意义上),但敏感于位移、旋转等几何变换。而SVD则具有位移、旋转不变性。因此,将这两种方法相结合就有可能提高分类性能(好于单独的SVD方法和单独的PCA方法)。在ORL数据库上的实验表明,SVD和PCA相融合的识别方法的确提高了人脸识别率。 相似文献
17.
本文使用Daubechies正交小波变换对人脸图像进行二次小波分解:首先对第二次小波变换低频子图像进行PCA分析。运用邻域法进行分类得到距离隶属度。利用模糊分析提取出候选样本,对候选样本第一次小波变换的低频子图像进行PCA分析,运用最近邻域法进行分类得到最终识别结果。实验表明:小波变换预处理得到多尺度多特征;分类结果之间具有一定的互补性,同时可以提高分类性能。 相似文献