首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of SO2 for the selective reduction of NO by C3H8 on Ag/Al2O3 was investigated in the presence of excess oxygen and water vapor. The NOx conversion decreased permanently even in the presence of a low concentration of SO2 (0.5–10 ppm) at <773 K. The increase in SO2 concentration resulted in a large decrease in NOx conversion at 773 K. However, when the reaction temperature was more than 823 K, the activity of Ag/Al2O3 remained constant even in the presence of 10 ppm of SO2. The sulfate species formed on the used Ag/Al2O3 were characterized by a temperature programmed desorption method. The sulfated species formed on silver should mainly decrease the deNOx activity on the Ag/Al2O3. The sulfated Ag/Al2O3 was appreciably regenerated by thermal treatment in the deNOx feed at 873 K. The moderate activity remains at 773 K in the presence of 1 ppm SO2 for long time by the heat treatment at every 20 h intervals.  相似文献   

2.
Effect of additives, Ce and Mn, on the catalytic performance of Sn/Al2O3 catalyst prepared by sol–gel method for the selective reduction of NOx with propene under lean conditions was studied. Sn–Ce/Al2O3 catalysts exhibited higher activity than Sn/Al2O3 catalyst and the optimum Ce loading is 0.5–1%. The promoting effect of Ce is to enhance the oxidation of NO to NO2 and facilitate the activation of propene, both of which are important steps for the NOx reduction. The presence of oxygen contributes to the oxidation of NO and shows a promoting effect.  相似文献   

3.
Electrocatalysts of the general formula IrxRu1−xO2 were prepared using Adams’ fusion method. The crystallite characterization was examined via XRD, and the electrochemical properties were examined via cyclic voltammetry (CV) in, linear sweep voltammetry (LSV) and chronopotentiometry measurements in 0.5 M H2SO4. The electrocatalysts were applied to a membrane electrode assembly (MEA) and studied in situ in an electrolysis cell through electrochemical impedance spectroscopy (EIS) and stationary current density–potential relations were investigated. The IrxRu1−xO2 (x = 0.2, 0.4, 0.6) compounds were found to be more active than pure IrO2 and more stable than pure RuO2. The most active electrocatalyst obtained had a composition of Ir0.2Ru0.8O2. With an Ir0.2Ru0.8O2 anode, a 28.4% Pt/C cathode and the total noble metal loading of 1.7 mg cm−2, the potential of water electrolysis was 1.622 V at 1 A cm−2 and 80 °C.  相似文献   

4.
A series of CuO/Ce x Zr1–x O2 catalyst powders with different Ce/Zr ratio were prepared via an impregnation method and characterized by X-ray diffraction (XRD), Fourier transform Raman (FT-Raman), H2-Temperature-programmed reduction (TPR) and X-ray photoelectron spectra techniques. The catalytic properties of the catalysts were evaluated by means of a microreactor-GC system. XRD results showed that the addition of CuO had no effect on the crystalline lattice of the support. The structures of the Ce x Zr1–x O2 samples were confirmed by XRD analyses and FT-Raman results. The H2-TPR profiles for these catalysts had three peaks, which could be attributed to the reduction of three kinds of CuO species, i.e., the highly dispersed CuO, the larger CuO species and the bulk CuO. The TPR analyses and catalytic property tests indicated that the Ce/Zr ratio of CuO/Ce x Zr1–x O2 had an effect on the dispersion degree of CuO and the catalytic activity of the catalysts.  相似文献   

5.
SmYb1−xMgxZr2O7−x/2 (0 ≤ x ≤ 0.15) ceramics are pressureless-sintered at 1973 K for 10 h in air. The structure and electrical conductivity of SmYb1−xMgxZr2O7−x/2 ceramics are investigated by the X-ray diffraction, scanning electron microscopy and impedance spectroscopy measurements. SmYb1−xMgxZr2O7−x/2 ceramics exhibit a defect fluorite-type structure. The measured electrical conductivities of SmYb1−xMgxZr2O7−x/2 ceramics obey the Arrhenius relation, and electrical conductivity of each composition increases with increasing temperature from 673 to 1173 K. At identical temperature levels, the electrical conductivity of SmYb1−xMgxZr2O7−x/2 ceramics gradually increases with increasing magnesia content. SmYb1−xMgxZr2O7−x/2 ceramics are oxide-ion conductors in the oxygen partial pressure range of 1.0 × 10−4 to 1.0 atm at all test temperature levels. The electrical conductivity obtained in SmYb1−xMgxZr2O7−x/2 ceramics reaches the highest value of 2.72 × 10−3 S cm−1 at 1173 K for the SmYb0.85Mg0.15Zr2O6.925 ceramic.  相似文献   

6.
This paper describes the selective oxidation of ammonia into nitrogen over copper, silver and gold catalysts between room temperature and 400 °C using different NH3/O2 ratios. The effect of addition of CeOx and Li2O on the activity and selectivity is also discussed. The results show that copper and silver are very active and selective toward N2. However the multicomponent catalysts: M/Li2O/CeOx/Al2O3 (M: Au, Ag, Cu) perform the best. On all three metal containing catalysts the activity and selectivity is influenced by the particle size and the interaction between metal particles and support.  相似文献   

7.
In this study, the parameters governing the activity of Pd/ceria-zirconia catalysts in the selective catalytic reduction (SCR) of NOx assisted by methane are investigated using a combination of temperature-programmed spectroscopic and thermogravimetric techniques and transient SCR conditions. By DRIFTS of adsorbed CO, it is established that Pd species on Ce0.2Zr0.8O2 are mainly present in cationic form but exhibit high reducibility. As found by temperature-programmed surface reaction (TPSR) in CH4 + NO2 atmosphere, the CH4-SCR reaction is initiated at 280 °C on Pd/Ce0.2Zr0.8O2 and yields almost 100% N2 above 500 °C. DRIFTS-MS and TGA experiments performed under transient SCR conditions show that DeNOx activity is due to a surface reaction between some methane oxidation products on reduced Pd sites with ad-NxOy species presumably located on the support. The detrimental effect of O2 on DeNOx is explained by the promotion of the total combustion of methane assisted by the ceria-zirconia component at the expense of the SCR reaction above 320 °C.  相似文献   

8.
InBaCo4−xZnxO7 oxides have been synthesized and characterized as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFC). The effect of Zn substitution for Co on the structure, phase stability, thermal expansion, and electrochemical properties of the InBaCo4−xZnxO7 has been investigated. The increase in the Zn content from x = 1 to 1.5 improves the high temperature phase stability at 600 °C and 700 °C for 100 h, and chemical stability against a Gd0.2Ce0.8O1.9 (GDC) electrolyte. Thermal expansion coefficient (TEC) values of the InBaCo4−xZnxO7 (x = 1, 1.5, 2) specimens were determined to be 8.6 × 10−6 to 9.6 × 10−6/°C in the range of 80–900 °C, which provides good thermal expansion compatibility with the standard SOFC electrolyte materials. The InBaCo4−xZnxO7 + GDC (50:50 wt.%) composite cathodes exhibit improved cathode performances compared to those obtained from the simple InBaCo4−xZnxO7 cathodes due to the extended triple-phase boundary (TPB) and enhanced oxide-ion conductivity through the GDC portion in the composites.  相似文献   

9.
Oxygen storage capacity (OSC) of CeO2–ZrO2 solid solution, CexZr(1−x)O4, is one of the most contributing factors to control the performance of an automotive catalyst. To improve the OSC, heat treatments were employed on a nanoscaled composite of Al2O3 and CeZrO4 (ACZ). Reductive treatments from 700 to 1000 °C significantly improved the complete oxygen storage capacity (OSC-c) of ACZ. In particular, the OSC-c measured at 300 °C reached the theoretical maximum with a sufficient specific surface area (SSA) (35 m2/g) after reductive treatment at 1000 °C. The introduced Al2O3 facilitated the regular rearrangement of Ce and Zr ions in CeZrO4 as well as helped in maintaining the sufficient SSA. Reductive treatments also enhanced the oxygen release rate (OSC-r); however, the OSC-r variation against the evaluation temperature and the reduction temperature differed from that of OSC-c. OSC-r measured below 200 °C reached its maximum against the reduction temperature at 800 °C, while those evaluated at 300 °C increased with the reduction temperature in the same manner as OSC-c.  相似文献   

10.
A series of cerium modified MnOx/TiO2 catalysts were prepared by sol–gel method and used for low-temperature selective catalytic reduction (SCR) of NOx with ammonia. The experimental results showed that NO conversion could be improved by doping Ce from 39% to 84% at 80 °C with a gas hourly space velocity (GHSV) of 40,000 h−1. This activity improvement may be contributed to the increase of chemisorbed oxygen and acidity after Ce doping. TPR results also verified that the redox property of Ce modified MnOx/TiO2 was enhanced at low-temperature.  相似文献   

11.
Arena  G.E.  Bianchini  A.  Centi  G.  Vazzana  F. 《Topics in Catalysis》2001,16(1-4):157-164
The transient reactivity and surface phenomena of storage and conversion of NO x species on Pt(1%)–Me/Al2O3 catalysts, where Me = Ba, Ce and Cu, were studied by the RWF (rectangular wavefront) method. The Me component has a relevant influence on the processes of surface storage and transformation. The reduction of NO x by propene in the presence of oxygen is promoted by adding Cu to a Pt/Al2O3 catalyst, while cerium promotes transient conversion of NO in the absence of propene, but inhibits the reduction of NO x in the presence of propene. Copper is suggested to be a promising element to add together with Ba for new NO x storage-reduction catalysts due to its capacity to act both as a storage element and as promoter for NO x reduction.  相似文献   

12.
Ammonium nitrate is thermally stable below 250 °C and could potentially deactivate low temperature NOx reduction catalysts by blocking active sites. It is shown that NO reduces neat NH4NO3 above its 170 °C melting point, while acidic solids catalyze this reaction even at temperatures below 100 °C. NO2, a product of the reduction, can dimerize and then dissociate in molten NH4NO3 to NO+ + NO3, and may be stabilized within the melt as either an adduct or as HNO2 formed from the hydrolysis of NO+ or N2O4. The other product of reduction, NH4NO2, readily decomposes at ≤100 °C to N2 and H2O, the desired end products of DeNOx catalysis. A mechanism for the acid catalyzed reduction of NH4NO3 by NO is proposed, with HNO3 as an intermediate. These findings indicate that the use of acidic catalysts or promoters in DeNOx systems could help mitigate catalyst deactivation at low operating temperatures (<150 °C).  相似文献   

13.
The effect of TiO2 on the formation and microstructure of magnesium aluminate spinel (MgAl2O4) at 1600 °C in air and reducing conditions were investigated. Under reducing conditions, stoichiometric MgAl2O4 spinel shifted toward alumina-rich types owing to volatilization of MgO, resulting in an increase in the porosity of fired samples. Addition of graphite to mixtures of MgO and Al2O3 intensified the reducing conditions and accelerated the formation of non-stoichiometric MgAl2O4. For TiO2-containing samples on addition of MgAl2O4, magnesium aluminum titanium oxide (MgxAl2(1−x)Ti(1+x)O5, x = 0.2 or 0.3) was detected as a minor phase. Under reducing conditions, XRD peak shifts were smaller for TiO2-containing samples than for samples without TiO2 owing to the formation of a solid solution of TiO2 in MgAl2O4 and establishment of alumina-rich spinel, which have opposite effects on increasing the lattice parameter. In bauxite-containing samples, MgAl2O4 spinel, corundum, magnesium orthotitanate spinel (Mg2TiO4) and amorphous phases were identified. Mg2TiO4 spinel formed a complete solid solution with MgAl2O4 spinel but Mg2TiO4 remained as a distinct phase owing to the heterogeneous microstructure of bauxite-containing samples. Also dense microstructure established in air fired TiO2 containing samples. The results are discussed with emphasis on the application and design of alumina-magnesia-carbon refractory materials, which are used in the steel industry.  相似文献   

14.
Additives, without noble metals, based in Ce–Al mixed oxides supported on γ-alumina have been investigated as potential catalysts for the NO x reduction in the FCCU regenerator. The best results were obtained with clusters of Sn–Cu–Al–O interacting with Ce–Al mixed oxides highly dispersed on the γ-Al2O3. The strong interaction between the two complex oxides provides a stable catalyst with high activity at high temperature. These additives would be active in the dense phase of the FCC regenerator, being deactivated at oxygen concentrations higher than 2%, but they would be regenerated in the FCC reactor. A. Uzcátegui is in leave to Laboratorio de cinética y catálisis del Departamento de Química, Facultad de Ciencias, Universidad de los Andes, La Hechicera, Merida, Venezuela.  相似文献   

15.
The deactivation of a Pt/Ba/Al2O3 NO x -trap model catalyst submitted to SO2 treatment and/or thermal ageing at 800 °C was studied by H2 temperature programmed reduction (TPR), X-ray diffraction (XRD) and NO x storage capacity measurements.The X-ray diffractogram of the fresh sample exhibits peaks characteristic for barium carbonate. Thermal ageing leads to the decomposition of barium carbonate and to the formation of BaAl2O4. The TPR profile of the sulphated sample shows the presence of (i) surface aluminium sulphates, (ii) surface barium sulphates, (iii) bulk barium sulphates. The exposure to SO2 after ageing leads to a small decrease of the surface barium-based sulphates, expected mainly as aluminate barium sulphates. This evolution can be attributed to a sintering of the storage material. TPR experiments also show that thermal treatment at 800 °C after the exposure to SO2 involves the decomposition of aluminium surface sulphates to give mainly bulk barium sulphates, also pointed out by XRD. Thus, the thermal treatment at 800 °C leads to a stabilization of the sulphates.These results are in accordance with the NO x storage capacity measurements. On non-sulphated catalysts, the treatment at 800 °C induces to a decrease of the NO x storage capacity, showing that barium aluminate presents a lower NO x storage capacity than barium carbonate. Sulphation strongly decreases the NO x storage capacity of catalysts, whatever the initial thermal treatment, showing that barium sulphates inhibit the NO2 adsorption. Moreover, the platinum activity for the NO to NO2 oxidation is lowered by thermal treatments.  相似文献   

16.
17.
In this work, a series of Fe3−xTixO4 (0 ≤ x ≤ 0.78) was synthesized using a new soft chemical method. The synthetic Fe3−xTixO4 were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Mössbauer spectroscopy, thermogravimetric and differential scanning calorimetry (TG–DSC) analyses. The results showed that they were spinel structures and Ti was introduced into their structures.Then, decolorization of methylene blue (MB) by Fe3−xTixO4 in the presence of H2O2 at neutral pH values was studied using UV–vis spectra, dissolved organic carbon (DOC) and element C analyses. Furthermore, the degradation products remained in reaction solution after the decolorization were identified using ionic chromatography (IC), 13C nuclear magnetic resonance spectra (NMR), liquid chromatography and mass spectrometry (LC–MS). Although small amounts of MB were mineralized, the aromatic rings in MB were destroyed completely after the decolorization. Decolorization of MB by Fe3−xTixO4 in the presence of H2O2 was promoted remarkably with the increase of Ti content in Fe3−xTixO4 due to the enhancement of both adsorption and degradation of MB on Fe3−xTixO4.  相似文献   

18.
SO x traps were prepared using hydrotalcite materials of different composition and their SO x storage properties were monitored during temperature cycling (50–600 °C) under continuous feed streams (50 ppm SO2, 6 vol.% O2, 5 vol.% CO2, 100 ppm NO) at a space velocity of 144,000 L/(kg h). A comparison is made with non-hydrotalcite mixed oxide supports as well as pure alumina. The most promising material NaMnO x /Al2O3 was wash-coated on a cordierite core and its SO x trap capacity was compared with the performance of the powder and the slurry. The slurry as well as the monolith-supported material showed an SO2 uptake of 93% over 7 h time-on-stream corresponding to 20 wt.% sulphate. DRIFT spectroscopy revealed the prevailing sulphate formation on Mn-related sites and Na. Regeneration of the trap with CO/H2 (λ = 0.99) at 600 °C was not completely possible.  相似文献   

19.
Granger  P.  Lamonier  J.F.  Sergent  N.  Aboukais  A.  Leclercq  L.  Leclercq  G. 《Topics in Catalysis》2001,16(1-4):89-94
The intrinsic activity of various Zr x Ce1–x O2 mixed oxides and after a Pd deposition has been investigated in the CO + NO reactions from temperature-programmed experiments performed under stoichiometric conditions. It has been found that the activity of Zr x Ce1–x O2 depends on either the specific surface area or the number of Ce cations and their intrinsic activity, Zr0.5Ce0.5O2 being the most active support. The addition of palladium strongly enhances the catalytic activity of the supports probably due to a synergistic effect between CeO2 and the metal since the initial activity of palladium-based catalysts is directly related to their Ce content. Such a catalytic enhancement has been explained by a bifunctional mechanism involving active sites probably composed of Pd and ceria. A strong deactivation operates leading to the disappearance of the beneficial effect of ceria. Such a deactivation seems to be dependent on the support composition, Pd supported Zr0.25Ce0.75O2 being the most resistant to deactivation.  相似文献   

20.
The NO x storage performance at low temperature (100–200 °C) has been studied for model NO x storage catalysts. The catalysts were prepared by sequentially depositing support, metal oxide and platinum on ceramic monoliths. The support material consisted of acidic aluminium silicate, alumina or basic aluminium magnesium oxide, and the added metal oxide was either ceria or barium oxide. The NO x conversion was evaluated under net-oxidising conditions with transients between lean and rich gas composition and the NO x storage performance was studied by isothermal adsorption of NO2 followed by temperature programmed desorption of adsorbed species. The maximum in NO x storage capacity was observed at 100 °C for all samples studied. The Pt/BaO/Al2O3 catalyst stored about twice the amount of NO x compared with the Pt/Al2O3 and Pt/CeO2/Al2O3 samples. The storage capacity increased with increasing basicity of the support material, i.e. Pt/Al2O3·SiO2 < Pt/Al2O3 < Pt/Al2O3 · MgO. Water did not significantly affect the NO x storage performance for Pt/Al2O3 or Pt/BaO/Al2O3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号