首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intense global competition, dynamic product variations, and rapid technological developments force manufacturing systems to adapt and respond quickly to various changes in the market. Such responsiveness could be achieved through new paradigms such as Reconfigurable manufacturing systems (RMS). In this paper, the problem of configuration design for a scalable reconfigurable RMS that produces different products of a part family is addressed. In order to handle demand fluctuations of products throughout their lifecycles with minimum cost, RMS configurations must change as well. Two different approaches are developed for addressing the system configuration design in different periods. Both approaches make use of modular reconfigurable machine tools (RMTs), and adjust the production capacity of the system, with minimum cost, by adding/removing modules to/from specific RMTs. In the first approach, each production period is designed separately, while in the second approach, future information of products’ demands in all production periods is available in the beginning of system configuration design. Two new mixed integer linear programming (MILP) and integer linear programming (ILP) formulations are presented in the first and the second approaches respectively. The results of these approaches are compared with respect to many different aspects, such as total system design costs, unused capacity, and total number of reconfigurations. Analyses of the results show the superiority of both approaches in terms of exploitation and reconfiguration cost.  相似文献   

2.
Reconfigurable manufacturing systems (RMS) is a new manufacturing paradigm aiming at providing exactly functionality and capacity needed and exactly when needed. Reconfiguration is the main method to achieve this goal. But, the reconfiguration is an interruption to production activities causing production loss and system ramp-up problem and the ‘exact functionality’ may increase the reconfiguration efforts and aggravate the production loss and the ramp-up time. Therefore, a special RMS – delayed reconfigurable manufacturing system (D-RMS) is proposed to promote the practicality of RMS. Starting from the RMS built around part family with the characteristic of delayed differentiation, whose reconfiguration activities mainly occur in the latter stages of manufacturing system and the former stages have the potential to maintain partial production activities to reduce production loss during reconfiguration. Inspired from this, the basic structure of RMS is divided into two subsystems, subsystem 1 is capable of maintain partial production with a certain more functionality than needed, subsystem 2 reconfigure to provide exactly functionality and capacity of a specific part exactly when needed. And then, the benefits of D-RMS are analysed from inventory and ramp-up time aspects. Finally, a case study is presented to show the implementation process of D-RMS and validates the practicability of D-RMS.  相似文献   

3.
Machine availability has a profound influence on the performance of manufacturing systems. This paper extends a model for optimizing reconfigurable manufacturing systems (RMS) configurations with multiple-aspects to incorporate the effect of machine availability using the universal generating function (UGF). Two powerful meta-heuristic optimization techniques, namely genetic algorithms (GAs) and tabu search (TS), are used for optimizing the capital cost and system availability of the RMS configurations. The optimized configurations can handle multiple-parts and their structure is that of flow lines allowing paralleling of identical machines in each production stage. The various aspects considered in the RMS configurations include arrangement of machines, equipment selection and assignment of operations. A case study is presented and implementation of the optimization model is carried out using MATLAB software. The results of using both GAs and TS to solve the problem are then reported and compared for validation. Analysis of different cases of availability consideration including infinite and no buffer capacity is performed and results are compared to those obtained when machine availability is not considered. It has been shown that considering availability affects the optimal configuration selection and increases the required equipment. This increases the costs of the near-optimal configurations obtained especially in the case without buffers. The presented model can support the manufacturing systems configuration selection decisions at both the initial design and reconfiguration stages.  相似文献   

4.
Various products required by customers are classified into several product families, each of which is a set of similar products. A reconfigurable manufacturing system (RMS) manages to satisfy customers, with each family corresponding to one configuration of the RMS. Then, the products belonging to the same family will be produced by the RMS under the corresponding configuration. The manufacturing system possesses the reconfigurable function for different families. In the design period of a RMS, there may exist several feasible configurations for each family. Then, an important issue in a RMS is the optimal configurations for the families. Based on a stochastic model, an optimization problem stemmed from the issue is formulated. Two algorithms are devised to solve the optimization problem. Numerical examples are presented for evaluating the efficiency of the algorithms.  相似文献   

5.
Products required by customers are classified into several product families, each of which is a set of similar products. A reconfigurable manufacturing system (RMS) satisfies customer requirements by ensuring that each family corresponds to one configuration of the RMS. Products belonging to the same family will be produced by the RMS under the corresponding configuration. The manufacturing system is reconfigurable for different families. To utilize the RMS, a selection policy that is an action rule is needed, by which the manufacturer selects a family to produce ordered products belonging to the selected family. Thus, an important issue for an RMS is the optimal selection policy. Based on a stochastic model, an optimization problem stemmed from the issue is formulated. Two solution procedures are devised to solve the optimization problem. Numerical examples are presented for evaluating the efficiency of the algorithms.  相似文献   

6.
Products required by customers are classified into several product families, each of which is a set of similar products. A reconfigurable manufacturing system (RMS) manages to satisfy customers, with each family corresponding to one configuration of the RMS. Then the products belonging to the same family will be produced by the RMS under the corresponding configuration. The manufacturing system possesses the reconfigurable function for different families. In an RMS there are three important issues: the optimal configurations in the design, the optimal selection policy in the utilization, and the performance measure in the improvement. This paper proposes a framework for a stochastic model of an RMS, which involves the above issues. Two optimization problems and the performance measure stemmed from the issues are formulated. An example is given for illustration. Some discussions are presented for future research work.  相似文献   

7.
Various products required by customers are classified into several product families, each of which is a set of similar products. A reconfigurable manufacturing system (RMS) manages to satisfy customers, with each family corresponding to one configuration of the RMS. Then, the products belonging to the same family will be produced by the RMS under the corresponding configuration. The manufacturing system possesses the reconfigurable function for different families. A performance measure is defined as service levels for the families. A semi-Markov process is formulated for obtaining the performance measure. When a larger fluctuation in the market happens, the manufacturer can adjust the system to improve the performance measure. An optimization of a reassigning problem is discussed, which reassigns the maximum numbers of orders to the families. Two solution approaches are proposed to solve the problem. Numerical examples are given for illustrating the methodologies.  相似文献   

8.
In recent years, a variety of Internet-based systems has been developed for the purpose of Rapid One-of-a-Kind or customized Product Development (ROKPD). They can be applied in different stages of the product development process such as to rapidly capture customer requirements, and help produce high-quality products at low cost and short lead-time. Many of the systems, however, do not support rapid adaptation or dynamic reconfiguration of systems and tools for supporting ROKPD in a distributed manufacturing environment. To the authors’ knowledge, the infrastructure of such a reconfigurable platform for supporting distributed manufacturing has never been directly studied. This paper proposes an Internet-based reconfigurable ROKP platform that has been prototyped to serve as a substrate for integrating innovative tools and systems for One-of-a-Kind Production (OKP) companies in New Zealand. The main emphasis of this paper is to investigate how to build the Internet-based reconfigurable ROKPD platform and to design appropriate intelligent tools and systems for the purpose of rapidly and economically producing OKP products in the global environment. A number of recent developments are discussed, including the four open-domain infrastructure of the ROKPD platform, Internet-based data management systems, an integrated product data environment and a cost/lead time control tool.  相似文献   

9.
The industrial sector of the twenty-first century faces a highly volatile market in which manufacturing systems must be capable of responding rapidly to the market changes, while fully exploiting resources. The reconfigurable manufacturing system (RMS) is a state of the art technology offering the exact functionality and capacity needed, which is built around a part family. The configuration of an RMS evolves over a period to justify the needs of upcoming part families. The foundation for the success of an RMS, therefore, lies in the recognition of appropriate sets of part families. In the present work the authors have developed a novel operation sequence based BMIM (bypassing moves and idle machines) similarity coefficient using longest common subsequence (LCS) and the minimum number of bypassing moves and the quantity of idle machines. The effectiveness of the developed similarity coefficient has been compared with the existing best similarity/dissimilarity coefficients available in the existing literature. An example set of parts has been classified using the developed similarity coefficient and average linkage hierarchical clustering algorithm. The developed approach can also be used very effectively for part family formation in the cellular manufacturing system.  相似文献   

10.
Integrated process planning and scheduling (IPPS) is a manufacturing strategy that considers process planning and scheduling as an integrated function rather than two separated functions performed sequentially. In this paper, we propose a new heuristic to IPPS problem for reconfigurable manufacturing systems (RMS). An RMS consists mainly of reconfigurable machine tools (RMTs), each with multiple configurations, and can perform different operations with different capacities. The proposed heuristic takes into account the multi-configuration nature of machines to integrate both process planning and scheduling. To illustrate the applicability and the efficiency of the proposed heuristic, a numerical example is presented where the heuristic is compared to a classical sequential process planning and scheduling strategy using a discrete-event simulation framework. The results show an advantage of the proposed heuristic over the sequential process planning and scheduling strategy.  相似文献   

11.
Reconfigurable manufacturing systems (RMSs) are designed based on the current and future requirements of the market and the manufacturing system (MS). The first stage of designing an RMS at the tactical level is the evaluation of economic and manufacturing/operational feasibility. Because of risk and uncertainty in an RMS environment, this major task must be performed precisely before investment in the detailed design. The present paper highlights the importance of manufacturing capacity and functionality for the feasibility of an RMS design during reconfiguration processes. Due to uncertain demands of product families, the RMS key-design factors, i.e. capacity value, functionality degree and reconfiguration time, are characterized by the identified fuzzy sets. Consequently, an integrated structure of the analytical hierarchical process and fuzzy set theory is presented. The proposed model provides additional insights into a feasibility study of an RMS design by considering both technical and economical aspects. The fuzzy analytical hierarchical process model is examined in an industrial case study by means of Expert Choice software. Finally, the fuzzy multicriteria model is sensitively analysed within the fuzzy domains of those attributes, which are considered to be critical for the case study.  相似文献   

12.
To reveal the influence on system performance by the logistic model of reconfigurable manufacturing system (RMS), the generalised stochastic Petri nets (GSPN) modular modelling approach is presented in this paper. It is based upon the characteristics of a bottleneck service. According to this approach, the bottleneck service in the production process is found first. By corresponding different resources in the service to different modules of the GSPN, the module is reconfigured. The analysis of the model using the Markov chain is hereby presented, as is the average utilisation factor of RMS. Following this, the production capacity of different products and the average productivity of reconfigurable manufacturing cells (RMCs) are discussed.  相似文献   

13.
The dynamic nature of today’s manufacturing industry, which is caused by the intense global competition and constant technological advancements, requires systems that are highly adaptive and responsive to demand fluctuations. Reconfigurable manufacturing systems (RMS) enable such responsiveness through their main characteristics. This paper addresses the problem of RMS configuration design, where the demand of a single product varies throughout its production life cycle, and the system configuration must change accordingly to satisfy the required demand with minimum cost. A two-phased method is developed to handle the primary system configuration design and the necessary system reconfigurations according to demand rate changes. This method takes advantage of Reconfigurable Machine Tools in RMS. In fact, by adding/removing modules to/from a specific modular reconfigurable machine, its production capability could be increased, with lower cost. A novel mixed integer linear programming formulation is presented in the second phase of the method to optimise the process of selecting the best possible transformation for the existing machine configurations. Two different cases are designed and solved by implementing the established method. The results of these cases in terms of capital cost, capacity expansion cost, unused capacity and number of transformations, are compared with two hypothetical scenarios. Analyses of the obtained results indicate the efficiency of the proposed approach and offer a promising outlook for further research.  相似文献   

14.
A Reconfigurable Manufacturing System (RMS) is a new paradigm that focuses on manufacturing a high variety of products at the same system. Having specified a design strategy for an RMS as the first design step at the tactical level, products must be grouped to identify and allocate corresponding manufacturing facilities. An interface between market and manufacturing called reconfiguration link is presented to specify and arrange products for manufacturing. The reconfiguration link incorporates the tasks of determining the products in the production range, grouping them into families and selecting the appropriate family at each configuration stage. The proposed approach of (re)configuring products before manufacturing facilitates assigning product families to the required manufacturing facilities in terms of (re)configuring manufacturing systems. This paper contributes an overall approach of grouping products into families based on operational similarities, when machines are still not identified. Since the problem of product family selection consists of quantitative and qualitative objectives, the Analytical Hierarchical Process (AHP) is then used while considering both market and manufacturing requirements. The AHP model is verified in an industrial case study through using Expert Choice software. The solutions take advantage of monitoring sensitivity analysis while changing the priorities of manufacturing and/or market criteria. The concept of the proposed model is generic in structure and applicable to many firms. However, the model must be adapted according to the specific nature of the company under study. For instance, product family choices may differ from one company to another because of the available technology and the volume and type of existing products in the production range.  相似文献   

15.
可重构装配系统中装配模块的可重构性研究   总被引:1,自引:0,他引:1  
介绍了可以快速适应新产品装配生产的可重构装配系统概念,进行了可重构装配系统中装配模块的可重构性研究,提出将可重构装配模块的结构分为可重构接口模块、状态协调器模块和自治域模块三个部分的设计方案。在此基础上,构建了Scara仿真机器人装配模块和Motoman仿真机器人装配模块。通过可重构装配系统仿真实验证明,它们基本上符合可重构装配系统对于装配模块的要求。  相似文献   

16.
可重构制造系统是面向客户定制的一种新的制造模式.先阐述了可重构制造系统的概念及其特点,并对目前关于可重构制造系统的设计研究进行了总结.然后,以快速响应市场变化为目标,提出了基于公理设计理论的设计方法及设计步骤,对可重构制造系统进行设计,降低了设计的复杂性.层次化设计和分解方法保证了在设计过程中以适当的顺序做出合理决策.最后给出了可重构制造系统的工作流程图.  相似文献   

17.
This article presents a fuzzy goal programming-based approach for solving a multi-objective mathematical model of cell formation problem and production planning in a dynamic virtual cellular manufacturing system. In a dynamic environment, the product mix and part demand change over a planning horizon decomposed into several time periods. Thus, the cell formation done for one period may be no longer efficient for subsequent periods and hence reconfiguration of cells is required. Due to the variation of demand and necessity of reconfiguration of cells, the virtual cellular manufacturing (VCM) concept has been proposed by researchers to utilise the benefits of cellular manufacturing without reconfiguration charges. In a VCM system, machines, parts and workers are temporarily grouped for one period during which machines and workers of a group dedicatedly serve the parts of that group. The only difference of VCM with a real CM is that machines of the same group are not necessarily brought to a physical proximity in VCM. The virtual cells are created periodically depending on changes in demand volumes and mix, as new parts accumulate during a planning horizon. The major advantage of the proposed model is the consideration of demand and part mix variation over a multi-period planning horizon with worker flexibility. The aim is to minimise holding cost, backorder cost and exceptional elements in a cubic space of machine–part–worker incidence matrix. To illustrate the applicability of the proposed model, an example has been solved and computational results are presented.  相似文献   

18.
During a manufacturing operation, exceptions may occur dynamically and unpredictably. Their occurrence may lead to the degradation of system performance or, in the worst case scenario may interrupt the production process by causing errors in the schedule plan. This paper classifies three families of exceptions: (1) out-of-order events such as machine breakdowns, (2) operational out-of-ordinary events such as rush orders and (3) deteriorations of manufacturing resource performance such as reductions of machines’ utilization. In all cases, in order to maintain an adequate level of system performance, it is necessary to detect exceptions, to diagnose them quickly and to recover them by taking corrective actions to avoid fault propagations. Decisions concerning how to deal with exceptions, i.e. which strategy to implement, depend on the manufacturing environment (dedicated line, flexible system, reconfigurable system or a mix of them) and the advantages arising from using a certain exception handling policy vary from one production system to another. The activity of reconfiguring manufacturing resources has been demonstrated to be a powerful operation strategy to handle machine breakdowns. This paper extends the concept of ‘reconfiguration for exception handling’ to other families of exceptions and proposes reconfiguration for their recovery. The reconfiguration process is handled by an agent-based control system that implements four negotiation processes among manufacturing resource agents.  相似文献   

19.
A recent trend in research on reconfigurable manufacturing systems is the development of reconfigurable machine tools (RMTs). A RMT can be used as a group of machines through change of its configuration to satisfy different manufacturing requirements. A literature review is provided in this paper to demonstrate the state-of-the-art advances and challenges on research and development of RMTs from the perspectives of architecture design, configuration design and optimisation, and system integration and control. In architecture design, semi-open and open architectures based on modular design approach are often selected to allow different modules of the machine to be added and removed. In configuration design and optimisation, operations of reconfiguration processes are analysed and optimised to achieve variety of configurations with the minimum reconfiguration effort. In system integration and control, transfers of motion, energy and data among different modules of the RMT are carried out. The challenges in research on RMTs are also discussed.  相似文献   

20.

In order to react to the continuous and unpredictable changes in product demand, in product variety, and in process technologies, reconfigurable manufacturing systems allow quick adjustment of production capacity and functionality by rearranging or changing their modular components. In this kind of system, operation management issues, such as exception handling policies, become more complex since correct reconfiguration strategies have to be selected. This paper explores the potential of the reconfigurability feature to be a basis for the development of new strategies to handle out-of-the-ordinary events in the production process; in particular, maintaining production flow when machine breakdowns occur. Decisions regarding how to deal with exceptions to the production process are complex and depend on the manufacturing system configuration and on many performance and economic variables. The authors propose agent-based manufacturing control for exception handling because of its ability to be very agile, as well as being reactive and efficient. Manufacturing agents, while working to pursue their specific goals, achieve the global target of the system. Complex decisions can be made due to the synergy arising from the agents' internal reasoning and the negotiation process among these agents. The adopted negotiation mechanism is based on the contract-net protocol, while different strategies have been designed for the internal reasoning. The authors demonstrate that, under certain conditions, an agent's internal strategies based on fuzzy reasoning improve the global performance of the system. The proposed control model has been tested on a discrete event simulation test-bed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号