共查询到20条相似文献,搜索用时 0 毫秒
1.
Fengjuan Wang 《亚洲传热研究》2023,52(2):2003-2016
This study investigates the buckling of microbeams with variable cross-sections and middle supports in a thermal environment. Based on classical theories and modified couple stress, the size-dependent behavior of the microbeam is modeled, and the intermediate support is simulated elastically. A temperature-dependent relationship will also be assumed for the material properties of the microbeam. The governing equations will be derived using Hamilton's principle based on the modified Couple stress theory and the nonlinear thermal field. Using an analytical approach, buckling loads and deformation of microbeams will be determined. The accuracy of the answers will be investigated to demonstrate the effectiveness of the method used and the correctness of the results obtained. A comparison will be made between the obtained results and the results available in the scientific literature to prove the accuracy of the formulation and the method used. A parametric study will then be conducted to determine the effect of boundary conditions, the flexibility of the middle support, temperature distribution, and geometric characteristics on the buckling loads of microbeams. 相似文献
2.
This article deals with the thermal buckling and postbuckling of functionally graded material (FGM) beams with surface-bonded piezoelectric actuators based on physical neutral surface concept and high-order shear deformation theory including von Kármán strain–displacement relationships. The beams are exposed to a uniform temperature field and electric field, the material properties of FGM layers are temperature-dependent and vary in the thickness direction. The approximate solutions of piezoelectric FGM beams for thermal buckling and postbuckling are obtained by a two-step perturbation method, meanwhile, the analytical solutions of Timoshenko beam model and Euler beam model are also presented. The validity of the present work can be confirmed by comparisons with previous results. The effects of the applied actuator voltage, beam geometry as well as volume fraction index of FGM beam on the critical buckling temperature, and postbuckling load–deflection relationships are investigated. 相似文献
3.
In this article, the free vibration analysis of a functionally graded (FG) porous cylindrical microshell subjected to a thermal environment is investigated on the basis of the first-order shear deformation shells and the modified couple stress theories. The material properties are assumed to be temperature dependent and are graded in the thickness direction. The equations of motion and the related boundary conditions are derived using the principle of minimum potential energy and they are solved analytically. The model is validated by comparing the benchmark results with the obtained ones. The effects of material length scale parameter, temperature changes, volume fraction of the porosity, FG power index, axial and circumferential wave number, and length on the vibration behavior of the FG porous cylindrical microshell are studied. The results can have many applications such as in modeling of microrobots and biomedical microsystems. 相似文献
4.
In this work, the thermal effect on the buckling response of the axially functionally graded (AFG) nanobeams is studied based on the nonlocal thermoelasticity theory. Size effects of elastic deformation and heat conduction are considered simultaneously. Non-uniform distribution of temperature along the longitudinal direction of the AFG nanobeams is taken into account and determined by the nonlocal heat conductive law. Equations of motion and the corresponding boundary conditions are derived with the aid of the variational principle within the sinusoidal shear deformation theory and the nonlocal thermoelasticity theory. Ritz method is used to obtain the solutions for the thermal buckling response of the AFG nanobeams with various boundary conditions. Numerical results addressing the significance of the AFG index, the nonlocal parameters of elasticity and heat conduction, and the transverse shear deformation on the buckling behavior are displayed. It is found that, in addition to the nonlocal effect of elasticity, the nonlocal heat conduction plays an important role in analyzing the thermal–mechanical behaviors of the FG nanostructures. 相似文献
5.
Thermal buckling of annular sector plates with circular cutouts made of functionally graded material is analyzed in this article. Graded material is considered with two parts of ceramic structure made of zirconia and metal structure which is aluminum. Unlike most conducted research, the direction of property change is observed in three main directions. Thermal loading is assumed as a uniform increase in temperature influencing the whole sector. 3D-finite element method based on elasticity theory is used in this analysis, which resets first and second variations of potential energy of the sector to zero to find equilibrium and stability equations, respectively. Green’s nonlinear strain–displacement relations are used to obtain geometrical stiffness matrix. In the finite element method, unlike most studies, a 3D eight-nodded element is used, which has nodes in the direction of thickness. The circular cutouts of the sector have added to the complexity of the analysis. The finite element formulation is coded in MATLAB. Finally, the effect of different parameters such as dimension and number of cutouts, power law index, and orientation of graded material on the critical thermal buckling temperature is studied. 相似文献
6.
Seyed Sajad Mirjavadi Abdolhamid Matin Samira Rabby Behzad Mohasel Afshari 《热应力杂志》2017,40(10):1201-1214
This article presents a study on the thermal buckling behavior of two-dimensional functionally graded microbeams made of porous materials. The material composition varies along thickness and length of the microbeam based on the power law distribution. The microbeam is modeled within the framework of Euler–Bernoulli beam theory. The microbeam is considered having variable material composition along thickness. The equations are derived using the modified couple stress theory and the solving process is based on the generalized differential quadrature method. The validity of the results is shown through comparison of the results with the results of other published research. 相似文献
7.
Thermal stress distributions in an annular fin with rectangular profile made of functionally graded material (FGM) are considered. The material properties of annular fin are assumed to be graded along the fin radius as a power-law function while the Poisson’s ratio is taken to be constant. The governing equations are solved analytically for specific value of inhomogeneity parameter of thermal conductivity and all numerical values of inhomogeneity parameters of modulus of elasticity and linear thermal expansion coefficient. The effect of the inhomogeneity parameters on temperature distribution and thermal stresses are presented in graphical form. The formulation is validated with benchmark results in the literature. It is also shown that functionally graded annular fin is subject to lower stresses, although it has higher tip temperature than the homogeneous one. 相似文献
8.
This article presents an analytical solution for the mechanical and thermal buckling of exponentially graded material (EGM) sandwich plates. The solution is obtained using a four-variable refined plate theory. Two types of sandwich plates are investigated: one with EGM face sheets and homogeneous core; the other with EGM core and homogeneous face sheets. The governing equations are derived based on the principle of virtual work and then solved through Navier method. The results on critical buckling load and temperature change of simply supported EGM sandwich plates are obtained. The influences of several parameters on buckling behaviors are discussed. 相似文献
9.
10.
Postbuckling and nonlinear bending of a geometrically perfect circular plate arisen by the temperature of one side of a axisymmetric circular plate made from a poroelastic solid whose matrix pores have been saturated by fluid have been numerically analyzed. The plate porosity varies continuously through the plate thickness according to some given specific functions. The postbuckling and nonlinear bending configurations of respectively clamped and simply-supported plates, as well as the critical postbuckling temperature, have been obtained under the influence of the plate one side surface temperature, thickness, type of pore distribution, porosity and compressibility of fluid confined by the pores. Equilibrium equations of the plate have been derived on the basis of the classical plate theory, Love–Kirchhoff hypothesis and the Sander’s nonlinear strain–displacement relationship. They have been discretized via differential quadrature method. The numerical results appropriately coincide with the relevant literature, namely the results of saturated porous and mathematically equivalent plates made from functionally grated materials. 相似文献
11.
AbstractIn this paper, the thermoelastic behavior of a functionally graded material (FGM) annular fin is investigated. The material properties of the annular fin are assumed to vary radially. The heat transfer coefficient and internal heat generation are considered to be functions of temperature. A closed form solution of nonlinear heat transfer equation for the FGM fin is obtained using the homotopy perturbation method (HPM) which leads to nonuniform temperature distributions within the fin. The temperature field is then coupled with the classical theory of elasticity and the associated thermal stresses are derived analytically. For the correctness of the present closed form solution for the stress field, the results are compared with the ANSYS-based finite element method (FEM) solution. The present HPM-based closed form solution of the stress field exhibits a good agreement with the FEM results. The effect of various thermal parameters such as the thermogeometric parameter, conduction-radiation parameter, internal heat generation parameter, coefficient of variation of thermal conductivity, and the coefficient of thermal expansion on the thermal stresses are discussed. The results are presented in both nondimensional and dimensional form. The dimensional stress analysis discloses the suitability of FGM as the fin material in practical applications. 相似文献
12.
Hoang Van Tung 《热应力杂志》2017,40(5):641-663
This article presents an analytical approach to investigate the buckling and postbuckling behavior of functionally graded nanocomposite plates reinforced by single-walled carbon nanotubes, resting on elastic foundations and subjected to thermal load due to uniform temperature rise or linear temperature change across the plate thickness. The material properties of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) are assumed to be temperature independent, graded in the thickness direction, and estimated by extended rule of mixture through a micromechanical model. Formulations are based on classical plate theory taking von Kármán nonlinearity, initial geometrical imperfection, Pasternak-type foundation interaction, and tangential-edge constraints into consideration. Approximate solutions of deflection and stress functions are assumed to satisfy simply supported boundary conditions, and the Galerkin method is applied to obtain closed-form expressions of buckling temperatures and temperature-deflection relations. The influences of carbon-nanotube volume fraction and distribution pattern, aspect ratios, stiffness of foundations, degree of tangential-edge constraints, and imperfection on the thermal buckling and postbuckling behavior of FG-CNTRC plates are analyzed and discussed. 相似文献
13.
In this article, a fracture mechanics model for functionally graded materials (FGMs) with general thermomechanical properties and collinear cracks under thermal loading is proposed. Assuming the thermomechanical properties of FGM strip to be general continuous functions of the coordinate in the thickness direction, the FGM strip is divided into a multilayered medium with the thermomechanical properties varying exponentially in each layer. Using the superposition method, the problem is reduced to a perturbation problem in which the crack surface tractions are the only external forces. Finally, the crack problem is reduced to integral equations with generalized Cauchy kernel and solved numerically. Some typical examples are discussed and the thermal stress intensity factors (TSIFs) for the collinear cracks are presented. The influences of the geometry parameters and the interaction between both collinear cracks on the TSIFs are discussed. Some important conclusions are drawn. 相似文献
14.
Thermal buckling and vibration of functionally graded (FG) sinusoidal microbeams with temperature-dependent properties and three kinds of temperature distributions are investigated in this article. As one material length scale is introduced, the modified couple stress theory is capable of predicting the small-scale effects. Material properties of FG microbeams are calculated using the Mori–Tanaka method. Furthermore, temperature-dependent properties are taken into account to investigate the mechanical characteristics of FG microbeams in high–thermal-gradient environment. Motion equations and the associated boundary conditions are obtained simultaneously through variational principle. Then Navier procedure and the differential quadrature method incorporating an iterative procedure are used to solve the governing differential equations with temperature-dependent properties and general boundary conditions. Numerical examples are performed for demonstrating the influences of temperature distribution, beam thickness, material length scale, slenderness ratio, shear deformation, functionally graded index, boundary conditions, and temperature-dependent/independent properties on thermal buckling and free vibration behaviors of FG microbeams. 相似文献
15.
Surface elasticity-based modeling of rotating functionally graded nanoshafts in thermal environments
Keivan Kiani 《热应力杂志》2016,39(12):1483-1498
Thermoelastic field analysis of a rotating functionally graded nanoshaft (RFGNS) in thermal environments is of interest. The governing equations of the rotating nanoshaft with varying material properties along the radial direction are obtained. Two nonclassical boundary conditions, namely, fixed-free and free–free, are established accounting for the surface energy effect. Using finite element method and Hamilton's principle, the thermoelastic field within RFGNS is evaluated. The effects of power-law index, aspect ratio, temperature, angular velocity of the RFGNS, and surface energy on the displacements and stresses are displayed in detail. 相似文献
16.
In this article, the size-dependent behavior of micro-beams with the thermoelastic damping (TED) phenomenon is studied. The coupled thermoelasticity equations are derived on the basis of the modified couple stress theory (MCST) and dual-phase-lag (DPL) heat conduction model. By solving these coupled equations simultaneously, a closed-form expression for the TED parameter in micro-beams is presented which considers the small-scale effects incorporation. Then, the effect of various parameters on TED in micro-beams, such as micro-beam height, the type of material, boundary conditions, and aspect ratio is investigated. The results show that the influence of utilizing non-classical continuum and thermoelasticity theories on the amount of TED and the critical thickness is significant in small scales. 相似文献
17.
This study develops the transient thermoelectromechanical vibration and bending analysis of a functionally graded piezoelectric nanosheet rest on visco-Pasternak’s foundation. Nonlocal elasticity theory as well as classical plate theory is used to implement basic equations of the nanosheet. The plate is resting on visco-Pasternak’s foundation and subject to mechanical, thermal, and electrical loadings. Hamilton’s principle is used for derivation equations of motion in terms of displacement components. As a first case study and for validation of the responses of the system, nonlocal vibration analysis of nanosheet is studied. The effects of nonlocal parameter and nonhomogeneous index of nanosheet are studied on the fundamental frequencies of the system. As the main objective of this study, the electrothermal bending results of the nanosheet are studied. The effects of some important parameters such as nonlocal parameter, nonhomogeneous index, thickness, distribution of electric potential, and damping are calculated on the maximum deflection of the sheet under various thermal and electrical loadings. 相似文献
18.
This article presents an analytical solution for the thermoelastic analysis of simply supported functionally graded sandwich plates using the Carrera unified formulation, which allows the automatic implementation of various structural theories. The governing equations for plates under thermal loads are obtained using the principal of virtual displacement and solved using the Navier method. Linear and nonlinear temperature fields through the thickness are taken into account. Particular attention is focused on plate theories with nonpolynomial refined kinematics. The results of the present displacement fields are compared with the classical polynomial ones, proposed by Carrera, for several orders of expansion. 相似文献
19.
M. Saied K. Ahmed M. Ahmed M. Nemat-Alla M. El-Sebaie 《International Journal of Hydrogen Energy》2017,42(24):15887-15902
A comprehensive 3D theoretical model has been developed to investigate the performance and thermal stress distributions of planar anode-supported solid oxide fuel cells with functionally graded electrodes, at an intermediate temperature. The model includes the equations of charge transport, conservation of mass, momentum, and energy along with the thermal stress and strains. The comprehensive model is simulated numerically and the numerical results are validated using experimental data. The constituent fraction ratio and porosity distribution of each electrode are controlled with a material grading parameter m. Results indicate that the solid oxide fuel cell with functionally graded electrodes perform better than the conventional cell. The power density has shown 23% increase at a working voltage of 0.6 V using functionally graded electrodes with the material grading parameter m = 2.0. Furthermore, the maximum Von Misses stress corresponding to m = 2.0 is less than half the yield stress at both cathode and electrolyte, while they exceed the yield limit for conventional electrodes (constant porosity at electrodes) at the same working conditions. The current results can guide designers of solid oxide fuel cells to adopt functionally graded electrodes for higher performance outcomes and safer thermal stress. 相似文献
20.
《热应力杂志》2012,35(1):109-131
AbstractConsidering the third-order shear deformation and physical neutral plane theories, thermal postbuckling analysis for functionally graded (FG) porous beam are performed in this research. The cases of shear deformable functionally graded materials (FGM) beams with initial deflection and uniformly distributed porosity are considered. Geometrically imperfect FG porous beams with two different types of immovable boundary conditions as clamped–rolling and clamped–clamped are analyzed. Thermomechanical nonhomogeneous material properties of the FG porous beam are assumed to be temperature and position dependent. FG porous beams are subjected to different types of thermal loads as heat conduction and uniform temperature rise. Heat conduction equation is solved analytically using the polynomial series solution for the one-dimensional condition. The governing equilibrium equations are obtained by applying the virtual displacement principle. Assuming von Kármán type of geometrical nonlinearity, equilibrium equations are nonlinear and are solved using an analytical method. A two-step perturbation technique is used to obtain the thermal buckling and postbuckling responses of FG porous beams. The numerical results are compared with the case of perfect FGM Timoshenko beams without porosity distribution based on the midplane formulation. Parametric studies of the perfect/imperfect FG porous beams for two types of thermal loading and boundary conditions are provided. 相似文献