首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
《分离科学与技术》2012,47(9-10):2434-2459
Abstract

Cyphos IL 101 (tetradecyl(trihexyl)phosphonium chloride) was immobilized on Amberlite XAD-7. The extractant impregnated resin (EIR) was very efficient at removing Zn(II) from HCl solutions (optimum found between 2 and 4 M HCl). Metal ions were removed as anionic chlorocomplexes (ZnCl4 2?) by ion exchange mechanism. The sorption strongly depended on the Cyphos IL 101 concentration in the EIR. The maximum sorption capacity was close to 20 mg Zn(II) g?1 EIR (i.e. 0.40 mol Zn(II) mol?1 Cyphos IL 101). The uptake kinetics were controlled by intraparticle diffusion (De: 1.2 10?11 ? 6 10?11 m2 min?1). Zn(II) can be easily desorbed using a number of eluents (including water and 0.1 M solution of HNO3, H2SO4, and Na2SO4), which maintained performance levels over 5 cycles.  相似文献   

4.
ABSTRACT

This work shows application of Cyphos IL 104 (trihexyl(tetradecyl)phosphonium bis(2,4,4-trimethylpentyl)phosphinate) as the extractant and the ion carrier of Ce(III) and La(III) from aqueous solutions through polymer inclusion membranes (PIM). These membranes were used for separation of Ce(III) from solution containing La(III), Cu(II), Co(II) and Ni(II). The best results of the separation process were obtained for PIM containing: 20.0 wt.% CTA, 55.0 wt.% NPOE and 25.0 wt.% Cyphos IL 104 at pH 3.8 into 1 M H2SO4. The separation coefficients were found in order of S Ce/La < S Ce/Cu < S Ce/Co < S Ce/Ni.  相似文献   

5.
The solvent extraction of uranium (VI) from chloride solutions by Cyphos IL-101 in xylene has been studied. Distribution coefficients were found to increase with aqueous chloride concentration and extractant concentration. The enthalpy of extraction is endothermic with ΔH = +24 ± 2 kJ·mol?1. Based upon slope analysis, an anion exchange extraction mechanism is proposed, with formation of a UO2Cl4 2- complex in association with 4 Cyphos IL-101 ligands. The extraction kinetics were fast, with complete equilibration occurring within 30 seconds. An isotherm for uranium extraction from 1.0 mol·L?1 chloride solution by 0.1 mol·L?1 Cyphos IL-101 in xylene shows that 45 mmol·L?1 uranium can be loaded into the organic phase in equilibrium with 2.1 mmol·L?1 in the aqueous phase. The absorption spectrum of the uranium loaded solvent between 350 and 550 nm is indicative of the UO2Cl4 2- complex with only chlorides present in the inner coordination sphere, unlike the more strongly hydrogen bonded Alamine 336 extracted uranium complex. Subject to the same experimental conditions, distribution coefficients for Cyphos IL-101 were significantly greater than for Alamine 336 or Aliquat 336.  相似文献   

6.
The separation of Sc(III) from Y(III), La(III) and Yb(III) in [C8mim][PF6] containing Cyanex 925 has been investigated, and is reported in this paper. A cation exchange mechanism of Sc(III) in [C8mim][PF6] and Cyanex 925 is proposed by study of the influence of anionic and cationic species on the extraction. The coefficient of the equilibrium equation of Sc(III) was confirmed by slope analysis of log DSc vs log [Cyanex 925], and the loading capacity also confirmed the stoichiometry of Cyanex 925 to Sc(III) was close to 3:1. Infrared data for Cyanex 925 saturated with Sc(III) in [C8mim][PF6] indicated strong interaction between P?O of Cyanex 925 and Sc(III). In addition, the relationship between log DSc and temperature showed that temperature had little influence on the extraction process, and the resulting thermodynamic parameters indicated that an exothermic process was involved. Copyright © 2007 Society of Chemical Industry  相似文献   

7.
8.
This study investigates the recovery of Zn(II) and Cr(III) from aqueous solutions based on solvent extraction with trioctylmethylammonium chloride [TOMA+][Cl-], commercialy named Aliquat 336. Single metal solutions and binary mixtures of both metals were considered. The effect of relevant operating conditions such as pH, contact time, initial concentration, O/A phase volumetric ratio, and temperature were evaluated. Additionally, loading capacity and stripping studies were performed. Results showed that [TOMA+][Cl?] is an effective extracting agent for Zn(II), reaching maximum removal capacity at pH 1.8 and demonstrating fast extraction kinetics. Extraction efficiencies above 99% were achieved at 0.5, 0.75, and 1.00 O/A volumetric phase ratios for 0.1 g/L initial Zn(II) concentration. At 1 g/L and 10 g/L concentration, for the same O/A ratios, approximately 88% of the initial Zn(II) was extracted. In contrast, it was found that negligible amounts of Cr(III) were transferred to the [TOMA+][Cl?] phase at the 1-5 pH range. Selectivity studies showed that Zn(II) removal is boosted in the presence of Cr(III), although no Cr(III) is extracted. [TOMA+][Cl?] exhibited a high Zn(II) storage capacity, since after 25 loading cycles with 1 g/L, the loading capacity reached approximately 13.5 g/L, and after five loading cycles with 5 g/L, the capacity reached 19.4 g/L. Stripping tests revealed that NaOH is an efficient agent for the removal of Zn(II) from the ionic liquids, reaching 98.5% removal after two cycles, whereas HNO3 is not a suitable agent, reaching less than 40% removal after three cycles. [TOMA+][Cl?] revealed high potential for separating Zn(II) from Cr(III).  相似文献   

9.
Ionic liquids (ILs) are employed for air-drying for the first time. The experimental gas–liquid equilibrium (EQ) of N2/O2 + [EMIM][BF4] and N2/O2 + [EMIM][BF4] + H2O systems under a broad temperature range are measured. The new modified UNIFAC-Lei model is successfully extended to predict the N2/O2-IL-H2O system based on extensive phase EQ data. The air-drying experiment using [EMIM][BF4] as an absorbent is conducted, confirming that this new technology is effective and efficient. © 2018 American Institute of Chemical Engineers AIChE J, 65: 479–482, 2019  相似文献   

10.
Liquid–liquid extraction of Ir(III) and Rh(III) with Cyanex 923 from aqueous hydrochloric acid media has been studied. Quantitative extraction of Ir(III) was observed in the range of 5.0–8.0 mol dm?3 HCl with 0.1 mol dm?3 Cyanex 923, while Rh(III) was extracted quantitatively in the range of 1.0–2.0 mol dm?3 HCl with 0.05 mol dm?3 Cyanex 923 in toluene along with 0.2 mol dm?3 SnCl2. The Ir(III) was back extracted with 4.0 mol dm?3 HNO3 quantitatively from the organic phase while Rh(III) was stripped with 3.0 mol dm?3 HNO3. The extraction of Rh(III) with Cyanex 923 was not quantitative without use of SnCl2. However in the extraction of Ir(III) a negative trend was observed in the presence of SnCl2. Varying the temperature of extraction showed that the extraction reactions of both the metal ions are exothermic in nature, and the stoichiometric ratio of Ir(III)/Rh(III) to Cyanex 923 in organic phase was found to be 1:3. The methods developed were applied to the recovery of these metal ions from a synthetic solution of similar composition to that from leaching of spent autocatalysts in 6.0 mol dm?3 HCl. © 2002 Society of Chemical Industry  相似文献   

11.
Dispersive liquid–liquid micro-extraction (DLLME) using three different imidazolium-based ionic liquid (IL) was applied for extraction of recalcitrant dyes, Eriochrome black T (anionic azo dye), and Crystal Violet (cationic triphenylmethane dye) from aqueous solutions, not previously reported. Effects of process parameters such as initial dye concentration, pH of aqueous phase, amount and type of IL on fraction extracted, and distribution ratio of dyes were studied. Further, dyes interaction with ILs and extraction mechanism were explored. Considering the high cost of ILs, regeneration and reuse study for ILs was also performed using reverse DLLME. The fraction extracted for both the dyes with all the ILs varied significantly with pH change. Maximum dyes fraction extracted were observed nearly at neutral pH (pH =7). However, the fraction extracted were different for different IL.  相似文献   

12.
Ionic liquids (ILs) functionalized solvent impregnated resins (SIRs) were prepared using IL modified Merrified resin as the polymeric supports by impregnation of extractant for extraction of Sc(III). The ILs modified Merrifield resin were prepared via covalent anchoring of imidazolium salts onto Merrifield resin. The polymeric supports with imidazolium chloride group (RCl) and imidazolium hexafluorophosphate group (RPF6) were characterized by FTIR, TGA, and elemental analysis. It was found that RCl and RPF6 had tunable hydrophilicity and hydrophobicity, different acid stability, and swelling behaviors in solvents. The effect of Cyanex 923 extractant or [C8mim][PF6] IL impregnated on RCl and RPF6 were studied. The results showed Cyanex 923 and [C8mim][PF6] exhibited stronger affinity to RPF6 than to RCl. RPF6 with Cyanex 923 was found to be effective in Sc(III) extraction. The extraction mechanisms of SIRs containing RPF6 and Cyanex 923 with or without [C8mim][PF6] were cation exchange and neutral complexation, respectively. [C8mim][PF6] acted as an extraction media and was involved in the cation exchanged extraction reaction. Sc(III) can be selectively separated from Tm(III), Yb(III), and Lu(III) by the SIRs. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
The physicochemical and electrochemical properties of room temperature ionic liquids based on quaternary phosphonium cations together with a dicyanamide anion are presented in this report. The most dicyanamide-based phosphonium ionic liquids prepared were hydrophilic, except ionic liquids containing a long alkyl chain in the phosohonium cation. It was found that asymmetric phosphonium cations gave low-melting salts in combination with a dicyanamide anion. The dicyanamide-based phosphonium ionic liquids exhibited relatively low viscosities and high conductivities when compared to those of the corresponding ammonium ionic liquids. Particularly, the ionic liquids containing a methoxy group in the phosphonium cations indicated very low viscosities. Comparatively good electrochemical stability of the dicyanamide-based phosphonium ionic liquids was confirmed by voltammetric measurements. The thermogravimetric analysis suggested that the dicyanamide-based phosphonium ionic liquids showed higher thermal stability than those of the corresponding ammonium ionic liquids, indicating an improving effect of the phosphonium cations on the thermal stability.  相似文献   

14.
《分离科学与技术》2012,47(17):2750-2755
ABSTRACT

Liquid–liquid extraction of Eu3+ from aqueous solution with 4-oxaheptanediamides (OHAs) as extractant into room temperature ionic liquids (RTILs) of 1-alkyl-3-methylimidazolium hexafluorophosphate (Cnmim+PF6, n = 4, 6 and 8) was investigated. The strong affinity of OHAs to Eu3+ was observed in the present Cnmim+PF6 system. The extraction was assumed to proceed by cation-exchange mechanism and formed a 4:1 complex of the OHA extractants and Eu3+ in C4mim+PF6 system. The preferable composition of extracted species was presumed to be Eu(OHA)4(H2O)4(PF6)3 by ESI-MS.  相似文献   

15.
Thiol–ene photopolymerization was employed in order to prepare a series of covalently crosslinked bis(phosphonium)‐containing poly(ionic liquid) (PIL) networks. While the counteranion was held constant (NTf2), the structure of the bis(phosphonium)‐containing ‘ene’ monomer was varied in order to explore the breadth of thermal, mechanical and conductive properties available for this system. Towards this end, it was determined that more flexible spacers within the cationic monomer led to PIL networks with lower Tg values and higher conductivities. Most notable was a two‐ to three‐orders‐of‐magnitude increase in ionic conductivity (from 10?9 to 10?6 S cm?1 at 30 °C, 30% relative humidity) when the R group on phosphonium was changed from phenyl to isopropyl. Changing the functional group ratio to off‐stoichiometry also led to a slight increase in conductivity. Although the thermal stability (Td5%) of the phosphonium ionic liquid monomers was found to be significantly higher (>400 °C) than that of analogous imidazolium monomers, this improvement was not observed to directly transfer over to the polymer where a two‐step decomposition pathway was observed. The first step is attributed to the thiol monomer backbone while the second step correlates well with decomposition of the phosphonium portion of the PIL. © 2019 Society of Chemical Industry  相似文献   

16.
Experimental data on extractive desulfurization (EDS) of dibenzothiophene (DBT), thiophene, benzothiophene, and other substituted derivatives of sulfur from liquid fuel using trihexyl(tetradecyl)phosphonium hexafluorophosphate ([THTDP][PF6]) have been presented. The Fourier transform infrared spectrophotometer, 1H-NMR, 13C-NMR, and 31P-NMR analysis have been discussed for molecular confirmation, and conductivity, solubility, and viscosity analyses of ([THTDP][PF6]) were investigated. The effects of time, temperature, S-compounds, ultrasonication, and recycling of ([THTDP][PF6]) on DBT removal from fuel were examined. Also, desulfurization of real fuels and multistage extraction was also tested. The data and results provided the significant insights of phosphonium ionic liquids as a promising solvent for EDS.  相似文献   

17.
离子液体液液萃取分离正辛烷/邻二甲苯   总被引:1,自引:0,他引:1       下载免费PDF全文
将直馏石脑油分离为脂肪烃和芳烃有助于实现石脑油资源的优化利用,溶剂萃取是芳烃/脂肪烃分离的重要途径,萃取剂的设计与优选对萃取过程至关重要。实验探究了多种离子液体对正辛烷/邻二甲苯混合物萃取分离的效果,以萃取选择性、分配系数和萃取性能指数作为评价指标优选出1-丁基-2,3-二甲基咪唑四氯化铁([Bm2im][FeCl4])萃取剂。对于中低浓度芳烃体系(<33%),在30℃、溶剂质量比为4时,邻二甲苯萃取选择性在45以上,分配系数在0.38~0.40,萃取性能指数在18以上,单次萃取脱芳率可达60%以上。相比传统的环丁砜萃取剂,[Bm2im][FeCl4]萃取剂可以使体系具有更大的两相区,易于正辛烷/邻二甲苯的分离。利用量子化学软件探究[Bm2im][FeCl4]与正辛烷/邻二甲苯的弱相互作用,并计算其结合能,解释离子液体高选择性萃取邻二甲苯的原因。  相似文献   

18.
Chromium is an important industrial raw material. As far as China is concerned, chromium is in great demand, which is dependent on imports and large emissions. So recovery of chromium has important economic and environmental protection value. The extraction and back extraction of Cr(III) from solution by the extractant diisooctyl phosphate (di-2-ethylhexylphosphoric acid [D2EHPA]) with n-octanol as assistant and sulphonated kerosene as diluent was studied. The effects of saponification rate, phase ratio, temperature, condensation of extract, aging of extractant, and pH of aqueous phase on extraction equilibrium were discussed, and the formulation of extractant was optimized. The coordination number of the extraction reaction under specific conditions was discussed by the saturation capacity method. The extraction reaction kinetics were mathematically characterized by binary linear regression. The advantages and disadvantages of back extraction with H2SO4 or NaOH were compared. At last, a process to realize the recycling of extractant was obtained.  相似文献   

19.
A remarkable disadvantage of pure ionic liquids, to be used as a solvent in different processes, is their high viscosity and density. Here, n-butyl acetate was used as a cosolvent in the liquid–liquid system of {water?+?acetone?+?1-hexyl-3-methylimidazolium hexafluorophosphate (HMIMPF6) ionic liquid}. Mixtures of the ionic liquid and the cosolvent were used as the organic phase to extract acetone from aqueous phase. A drastic decrease in viscosity and a significant decrease in density of the ionic liquid were achieved in the presence of cosolvent. Accordingly, the liquid–liquid equilibrium of different provided systems was studied under temperature of 298.2?K and atmospheric pressure of 81.5?kPa. Binary phase regions and corresponding tie-lines and binodal curves were obtained for ternary and quaternary systems. Results show the extension of the binodal solubility region as well as enhancements up to 41.8% in the acetone separation factor. The tie-line data consistency was confirmed by the Othmer–Tobias and the Hand equations. Moreover, the nonrandom two-liquid model of activity coefficient was applied satisfactorily to reproduce the equilibrium data with a root-mean-square deviation of only 1.95%.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号