首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
为获得一种新型的药物释放复合体系,本实验首先通过乳化交联法制备壳聚糖(CS)包载四环素(TC)微球,然后利用氧化海藻酸钠交联聚磷酸钙/壳聚糖(CPP/CS)复合材料,用冷冻干燥法制备了载药微球复合体系.并用傅立叶红外光谱仪(IR)、扫描电镜(SEM)及药物的体外释放等方法对该载药微球复合体系进行分析和表征.结果显示,经...  相似文献   

2.
壳聚糖-固态分散体载药微球的制备及性能研究   总被引:1,自引:0,他引:1  
陈丽媛  党奇峰  刘成圣  陈军  宋磊  范冰  陈西广 《功能材料》2012,43(13):1762-1765,1769
首先采用不同分子量的壳聚糖通过乳化-化学交联法制备了4种不同的壳聚糖载药微球。通过对微球的粒径、溶胀率、载药率、包封率等指标检测以及缓释性能的研究,发现分子量为240kDa的壳聚糖制备的载药微球缓释效果明显,载药率、包封率均较高,综合性能优于其它分子量壳聚糖制备的微球。利用该分子量壳聚糖包埋固态分散体制备了壳聚糖-固态分散体载药微球,改善了药物的溶解性并具有药物缓释作用。因此,壳聚糖-固态分散体载药微球是一种理想的药物缓释体系,可以用于包埋溶解性差,生物半衰期短,对胃肠刺激性强的药物。  相似文献   

3.
综述了近年来国内外利用天然高分子壳聚糖、海藻酸钠制备载药纳米微球的方法。着重介绍了采用离子交联法和乳化法制备海藻酸钠/壳聚糖纳米微球作为药物载体的研究进展,并对应用前景进行了展望。  相似文献   

4.
以水溶性壳聚糖盐酸盐为原料,戊二醛为交联剂,采用乳化交联法制备了壳聚糖盐酸盐微球。通过多种理化手段检测及体外MG63细胞共培养对壳聚糖盐酸盐微球的形貌结构、尺寸大小、粒径分布、成球机理、结晶度、热稳定性及细胞相容性进行了测试及表征,并与普通酸溶性壳聚糖制备的微球进行比较。结果表明水溶性壳聚糖盐酸盐与戊二醛通过Schiff碱反应产生交联,易成球,球形圆整光滑;粒径分布较窄,粒径约为5~10μm;微球结晶度较低,其热稳定性较壳聚糖盐酸盐原料和酸溶性壳聚糖微球均有提高;细胞相容性良好。该微球表现出与酸溶性壳聚糖微球相似的理化性质,但因其原料为水溶性,微球制备条件更为温和,在药物载体研究领域有望得到更广泛的应用。  相似文献   

5.
选择壳聚糖溶液为分散相,液体石蜡为连续相,首次采用核孔膜乳化方法制备壳聚糖微球.乳滴经戊二醛交联固化后所得微球球形度和单分散性良好(分散系数<20%).主要研究了核孔膜孔径大小、油水相体积比、表面活性剂种类及用量、温度和固化时间对微球制备的影响.结果表明,膜乳化法是制备单分散微球的良好方法.  相似文献   

6.
磁性壳聚糖复合微球的制备和性能研究   总被引:14,自引:0,他引:14  
本文采用乳化交联法制备了可附载放射性核素的磁靶向药物载体-磁性壳聚糖复合微球.考察了壳聚糖浓度、Fe3O4/壳聚糖质量比及搅拌速度等因素对磁性壳聚糖微球粒径、粒径分布以及形貌等对复合过程的影响,确定了制备高磁响应性的磁性壳聚糖的最佳条件,并借助不同手段对磁性壳聚糖的粒径、粒径分布、形貌及磁性能进行了初步表征.  相似文献   

7.
综述了壳聚糖微球的制备方法,如阴离子作用法、单凝聚和复凝聚、乳液固化和喷雾干燥法等。介绍了壳聚糖微球止血材料及其壳聚糖止血机理。开发多孔壳聚糖微球或与无机多孔材料复合,是今后壳聚糖止血材料的发展方向。  相似文献   

8.
本研究采用静电喷雾法,以壳聚糖为基质材料,康普瑞丁为模型药物制备微球。实验中采用AcOH/H2O和AcOH/H2O/EtOH两种溶剂,分析了微球形貌和粒径分布的影响因素,并且对CS-CA4微球的缓释性能进行了测定。结果表明,壳聚糖浓度、溶剂配比及乙醇和康普瑞丁的加入会使壳聚糖微球呈球状、中间塌陷的类球状、棒状等不同形貌,微球粒径存在较大差异;通过AcOH/H2O/EtOH复合溶剂将疏水性药物康普瑞丁载入壳聚糖微球,制备出的壳聚糖/康普瑞丁载药微球分散性好,粒径分布均匀,平均粒径仅为0.27μm;使用戊二醛蒸汽交联48h的微球缓释效果明显。  相似文献   

9.
文中以天然多糖果胶和壳聚糖为原料,采用乳化交联的方法制备了果胶酸锌微球,再通过自组装壳聚糖层并用柠檬酸钠固化,得到了核壳结构的凝胶微球,将药物奥沙拉嗪封装在凝胶微球中,考察了其药物缓释性能。通过红外光谱、扫描电镜、能谱分析和荧光显微镜对微球形貌和核壳结构进行了表征。通过单因素变量法对凝胶微球的制备进行了优化,并对微球的药物负载性能及在模拟结肠环境中的释药行为进行了研究。结果表明,果胶@壳聚糖载药微球的最高载药量和包封率分别为29.4%和37.3%,果胶@壳聚糖复合载药微球在pH=7.4的模拟结肠液中,前12 h内的释放量仅为35.29%,72 h后奥沙拉嗪的释放量达到了89.90%,而纯果胶载药微球前12 h的释放量就已经高达78.65%,体现了壳聚糖包封层在药物缓释中的重要性。锌离子在果胶@壳聚糖复合微球和果胶微球中的释放趋势与奥沙拉嗪一致,相比于果胶微球,果胶@壳聚糖复合微球具备良好的缓释性能,可用于治疗结肠炎症疾病。  相似文献   

10.
文中以天然多糖果胶和壳聚糖为原料,采用乳化交联的方法制备了果胶酸锌微球,再通过自组装壳聚糖层并用柠檬酸钠固化,得到了核壳结构的凝胶微球,将药物奥沙拉嗪封装在凝胶微球中,考察了其药物缓释性能。通过红外光谱、扫描电镜、能谱分析和荧光显微镜对微球形貌和核壳结构进行了表征。通过单因素变量法对凝胶微球的制备进行了优化,并对微球的药物负载性能及在模拟结肠环境中的释药行为进行了研究。结果表明,果胶@壳聚糖载药微球的最高载药量和包封率分别为29.4%和37.3%,果胶@壳聚糖复合载药微球在pH=7.4的模拟结肠液中,前12 h内的释放量仅为35.29%,72 h后奥沙拉嗪的释放量达到了89.90%,而纯果胶载药微球前12 h的释放量就已经高达78.65%,体现了壳聚糖包封层在药物缓释中的重要性。锌离子在果胶@壳聚糖复合微球和果胶微球中的释放趋势与奥沙拉嗪一致,相比于果胶微球,果胶@壳聚糖复合微球具备良好的缓释性能,可用于治疗结肠炎症疾病。  相似文献   

11.
In this article, the effect of the chitosan molecular weight (MW) on the characteristics of methotrexate (MTX)-encapsulated non-cross-linked chitosan microspheres was studied. Microspheres composed of low-molecular-weight (LMW, 40,000 Da), medium-molecular-weight (MMW, 480,000 Da) and high-molecular-weight (HMW, 850,000 Da) chitosan with the same degree of deacetylation (96%) were obtained by a simple spray-drying method. The MW of chitosan had a noticeable influence on the size distribution, encapsulation efficiency, micromeritic properties (angle of repose and bulk density), controlled release behavior, and mucoadhesive properties. The entrapment efficiencies were in the range of 90–99%. Spray-dried microspheres had a D50 value of 3.3–4.9 μm, which was suitable for nasal insufflations. The microspheres with LMW chitosan have the best flowability and highest bulk density but were found to be poor in terms of adhesion and in controlling the release behavior of MTX. The MMW chitosan microspheres exhibited the strongest adhesion to the mucosal surface, and the angle of repose values were between 34 and 47 degrees. They could control the release rate by modifying the drug/polymer ratios. Microspheres with HMW chitosan exhibited a lower adhesion than MMW chitosan and a lower release rate of MTX. The physical state of MTX in the chitosan matrix was studied by differential scanning calorimetry, which indicated the presence of a solid dispersion of the amorphous drug in the chitosan matrix. Nasal ciliotoxity showed only minor cilia irritation due to the microspheres, and consequently, they are suitable for nasal drug delivery.  相似文献   

12.
In this article, the effect of the chitosan molecular weight (MW) on the characteristics of methotrexate (MTX)-encapsulated non-cross-linked chitosan microspheres was studied. Microspheres composed of low-molecular-weight (LMW, 40,000 Da), medium-molecular-weight (MMW, 480,000 Da) and high-molecular-weight (HMW, 850,000 Da) chitosan with the same degree of deacetylation (96%) were obtained by a simple spray-drying method. The MW of chitosan had a noticeable influence on the size distribution, encapsulation efficiency, micromeritic properties (angle of repose and bulk density), controlled release behavior, and mucoadhesive properties. The entrapment efficiencies were in the range of 90-99%. Spray-dried microspheres had a D(50) value of 3.3-4.9 microm, which was suitable for nasal insufflations. The microspheres with LMW chitosan have the best flowability and highest bulk density but were found to be poor in terms of adhesion and in controlling the release behavior of MTX. The MMW chitosan microspheres exhibited the strongest adhesion to the mucosal surface, and the angle of repose values were between 34 and 47 degrees. They could control the release rate by modifying the drug/polymer ratios. Microspheres with HMW chitosan exhibited a lower adhesion than MMW chitosan and a lower release rate of MTX. The physical state of MTX in the chitosan matrix was studied by differential scanning calorimetry, which indicated the presence of a solid dispersion of the amorphous drug in the chitosan matrix. Nasal ciliotoxity showed only minor cilia irritation due to the microspheres, and consequently, they are suitable for nasal drug delivery.  相似文献   

13.
Semi-interpenetrating polymer network (IPN) microspheres of chitosan and poly(ethylene glycol) PEG were prepared for controlled release of drugs. A new method for the chemical crosslinking of chitosan microspheres containing isoniazid (INH) as a model drug is proposed and evaluated. The method consists of the exposure of microspheres to the vapor of crosslinking agent that act in gaseous phase under mild conditions. The structural analysis of the microspheres was carried out by FTIR-analysis. The swelling behavior, hydrolytic degradation, structural changes of the microspheres and loading capacity (LC) of the microspheres for INH were investigated. The prepared microspheres have shown 93% drug loading capacity, which suggested that these semi-IPN microspheres are suitable for controlled release of drugs in an oral sustained delivery system. © 2001 Kluwer Academic Publishers  相似文献   

14.
Particulate systems that could deliver drug specifically to duodenum have not yet been reported. The aim of this study was to develop a novel duodenum-specific drug delivery system based on thiolated chitosan and hydroxypropyl methylcellulose acetate maleate (HPMCAM) for the duodenal ulcer application. Berberine hydrochloride was used as model drug. Thiolated chitosan was synthesized and further used for the preparation of mucoadhesive microspheres. HPMCAM, which is insoluble below pH 3.0 was synthesized and used for the coating of thiolated chitosan microspheres (TCM). The resulting thiolated chitosan immobilized on chitosan was 268.21?±?18 μmol/g. In vitro mucoadhesion study showed that the mucoadhesion property of TCM was better than that of chitosan microspheres. Morphological observation showed that the HPMCAM coating would maintain its integrity in simulated gastric fluid (SGF) for 2?h and dissolved quickly in simulated pathological duodenal fluid (SPDF; pH 3.3). In vitro drug release studies showed that only 4.75% of the drug was released in SGF for 2?h, while nearly 90% of the drug was released within 6?h after transferring into SPDF.  相似文献   

15.
The conjugate microspheres (Chi-glu-FUR-m) were prepared by the dry-in-oil method using chitosan-5-fuorouridine conjugate. Chi-glu-FUR-m were characterized by drug content, particle shape and size, swelling property, and drug release. Their characteristics were compared with those of the simple microspheres (Chi/ FUR-m), which were prepared under similar conditions using a mixture of chitosan and 5-fluorouridine. Both microspheres prepared showed a high retention of the drug after preparation and similar particle size and shape. Swelling ratios after incubation in aqueous buflers of pH 7.4 for 6 hr were similar for both microspheres. Chi-glu-FUR-m swelled quickly in aqueous buffers of pH 7.4 and the disintegration was observed to occur gradually from 24 hr afrer the incubation. Chi-glu-FUR-m showed a gradual drug release (50% release time = 61 hr), while Chi/FUR-m released the drug very rapidly, Such characteristics of Chi-glu-FURm as swelling, slow disintegration, and gradual drug release propose its usefulness for localization or chemoembolization therapy.  相似文献   

16.
Particulate systems that could deliver drug specifically to duodenum have not yet been reported. The aim of this study was to develop a novel duodenum-specific drug delivery system based on thiolated chitosan and hydroxypropyl methylcellulose acetate maleate (HPMCAM) for the duodenal ulcer application. Berberine hydrochloride was used as model drug. Thiolated chitosan was synthesized and further used for the preparation of mucoadhesive microspheres. HPMCAM, which is insoluble below pH 3.0 was synthesized and used for the coating of thiolated chitosan microspheres (TCM). The resulting thiolated chitosan immobilized on chitosan was 268.21?±?18 μmol/g. In vitro mucoadhesion study showed that the mucoadhesion property of TCM was better than that of chitosan microspheres. Morphological observation showed that the HPMCAM coating would maintain its integrity in simulated gastric fluid (SGF) for 2?h and dissolved quickly in simulated pathological duodenal fluid (SPDF; pH 3.3). In vitro drug release studies showed that only 4.75% of the drug was released in SGF for 2?h, while nearly 90% of the drug was released within 6?h after transferring into SPDF.  相似文献   

17.
Chitosan microspheres containing 5-fluorouracil (5-FU), tegafur (FT), and doxifluridine (DFUR) were prepared by the dry-in-oil method using silicone oil with no surfactant as a dispersion medium. For DFUR-containing chitosan microspheres (DFUR-M), reacetylation with acetic anhydride or coating using chitosan and glutaraldehyde was performed. DFUR-M, reacetylated DFUR-M, and chitosan-coated DFUR-M were investigated on in vitro drug release, and the former two microspheres were examined for in vivo degradation after subcutaneous (s.c.) implantation in mice, and in vivo plasma concentration-time profiles after s.c. implantation in rats. The present method gave fairly large microspheres purely composed of chitosan and drug because of no use of surfactant, which showed the mean particle diameters of 300-900 µm and the drug contents of 4-22% (w/w). Encapsulation efficiency of DFUR was higher than that of 5-FU and FT. DFUR-M and reacetylated DFUR-M exhibited spherical shape except chitosan-coated DFUR-M. DFUR-M showed high initial rapid release, which was suppressed to some extent by reacetylation or chitosan coating. DFUR-M and reacetylated DFUR-M subcutaneously implanted were gradually degraded, and approximately half or a little more of the microspheres disappeared from the implanted site at 3 weeks postimplantation. DFUR-M and reacetylated DFUR-M implanted subcutaneously gave similar plasma concentration-time profiles of DFUR, which did not indicate prolonged release in vivo. DFUR-containing chitosan microspheres with fairly large size and good drug content could be obtained by the present preparation but remained to be improved for drug release properties.  相似文献   

18.
Background: The aim of this study was to develop chitosan microspheres for nasal delivery of ondansetron hydrochloride (OND). Method: Microspheres were prepared with spray-drying method using glutaraldehyde as the crosslinking agent. Microspheres were characterized in terms of morphology, particle size, zeta potential, production yield, drug content, encapsulation efficiency, and in vitro drug release. Results: All microspheres were spherical in shape with smooth surface and positively charged. Microspheres had also high encapsulation efficiency and the suitable particle size for nasal administration. In vitro studies indicated that all crosslinked microspheres had a significant burst effect, and sustained drug release pattern was observed until 24 hours following burst drug release. Nasal absorption of OND from crosslinked chitosan microspheres was evaluated in rats, and pharmacokinetic parameters of OND calculated from nasal microsphere administration were compared with those of both nasal and parenteral administration of aqueous solutions of OND. In vivo data also supported that OND-loaded microspheres were also able to attain a sustained plasma profile and significantly larger area under the curve values with respect to nasal aqueous solution of OND. Conclusion: Based on in vitro and in vivo data, it could be concluded that crosslinked chitosan microspheres are considered as a nasal delivery system of OND.  相似文献   

19.
This work is to develop novel electrospun poly(l-lactic acid) (PLLA) fiber mats for controllable delivery of hydrophobic and hydrophilic drugs. For this aim, bovine serum albumin (BSA, used as a hydrophilic model drug) was firstly enveloped into chitosan microspheres by spray drying. Benzoin (used as a hydrophobic model drug) was directly dissolved in PLLA solution and then the chitosan microspheres were suspended into the PLLA solution, which was used to prepare PLLA fiber mats by electrospinning. Polyvinylpyrrolidone (PVP) was added into the PLLA solution to tune the drug release behaviors. The results showed that the chitosan microspheres were uniformly distributed in the fibers. BSA had a short-term release while benzoin had a long-term and sustained release in all the dual drug delivery systems, and the release of both hydrophobic and hydrophilic drugs could be adjusted by changing the ratio of PVP/PLLA.  相似文献   

20.
The purpose of this project was to develop sustained release chitosan/β-cyclodextrin microspheres of theophylline (TH) prepared by spray drying method. The effect of several formulation variables on the characteristics of microspheres was studied. The B microspheres had a narrower particle size distribution with the diameter between l and 10 μm. SEM showed spherical microspheres with smooth or slightly wrinkled surfaces. FT-IR spectroscopy revealed that hydrogen bonds were formed between TH and chitosan or β-cyclodextrin. The drug entrapments significantly increased from 13.33 to 35.70% with an increase of the ratio of drug/polymer. The encapsulation efficiencies were from 85.16 to 91.40%. The in vitro release of TH from microspheres was related to the pH of the medium, swelling ability, especially in the ratio of drug/polymer. The B microspheres had a prolonged release pattern with the release rate of 60.20% (pH 6.8) within 8 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号