首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study describes the binding to human platelet A2A adenosine receptors of the new potent and selective antagonist radioligand [3H]5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo[4,3-e]-1,2,4-triazolo [1,5-c] pyrimidine ([3H]SCH 58261). Saturation experiments revealed that [3H]SCH 58261 labels a single class of recognition sites with high affinity (Kd = 0.85 nM), limited capacity (apparent Bmax = 85 fmol/mg of protein) and good specific binding (about 60%). [3H]SCH 58261 binding was not modulated by either the divalent cation Mg(+2) or guanine nucleotides. In competition experiments, a series of both adenosine agonists and antagonists inhibited [3H]SCH 58261 binding to A2A platelet receptors with rank order of potency and affinity similar to those observed in rat striatal membranes with the same radioligand. This confirms that the platelet A2A receptor is similar to that labeled in the brain striatum. Binding data were also found to be in good agreement with the results from functional studies such as A2A agonist-induced stimulation of adenylate cyclase or platelet aggregation inhibition. The present findings indicate that [3H]SCH 58261 is the first radioligand available for the characterization of the A2A receptor subtype in platelets.  相似文献   

2.
1. The present study describes the binding to rat striatal A2A adenosine receptors of the new potent and selective antagonist radioligand, [3H]-5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo[4,3-e]-1,2,4-triazol o [1,5-c] pyrimidine, [3H]-SCH 58261. 2. [3H]-SCH 58261 specific binding to rat striatal membranes ( > 90%) was saturable, reversible and dependent upon protein concentration. Saturation experiments revealed that [3H]-SCH 58261 labelled a single class of recognition sites with high affinity (Kd = 0.70 nM) and limited capacity (apparent Bmax = 971 fmol mg-1 of protein). The presence of 100 microM GTP in the incubation mixture did not modify [3H]-SCH 58261 binding parameters. 3. Competition experiments showed that [3H]-SCH 58261 binding is consistent with the labelling of A2A striatal receptors. Adenosine receptor agonists competed with the binding of 0.2 nM [3H]-SCH 58261 with the following order of potency: 2-hexynyl-5'-N-ethyl carboxamidoadenosine (2HE-NECA) > 5'-N-ethylcarboxamidoadenosine (NECA) > 2-[4-(2-carboxyethyl)-phenethylamino]-5'-N-ethylcarboxamidoadenosi ne (CGS 21680) > 2-phenylaminoadenosine (CV 1808) > R-N6-phenylisopropyladenosine (R-PIA) > N6-cyclohexyladenosine (CHA) = 2-chloro-N6-cyclopentyladenosine (CCPA) > S-N6-phenylisopropyladenosine (S-PIA). 4. Adenosine antagonists inhibited [3H]-SCH 58261 binding with the following order: 5-amino-9-chloro-2-(2-furyl)-[1,2,4]-triazolo[1,5-c] quinazoline (CGS 15943) > 5-amino-8-(4-fluorobenzyl)-2-(2-furyl)-pyrazolo [4,3-e]-1,2,4-triazolo [1,5-c] pyrimidine (8FB-PTP) = SCH 58261 > xanthine amine congener (XAC) = (E,18%-Z,82%)7-methyl-8-(3,4-dimethoxystyryl)-1,3-dipropylxanthine (KF 17837S) > 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) > or = 8-phenyltheophylline (8-PT). 5. The Ki values for adenosine antagonists were similar to those labelled with the A2A agonist [3H]-CGS 21680. Affinities of agonists were generally lower. The A1-selective agonist, R-PIA, was found to be about 9 fold more potent than its stereoisomer, S-PIA, thus showing the stereoselectivity of [3H]-SCH 58261 binding. Except for 8-PT, the adenosine agonists and antagonists examined inhibited [3H]-SCH 58261 binding with Hill coefficients not significantly different from unity. 6. The present results indicate that [3H]-SCH 58261 is the first non-xanthine adenosine antagonist radioligand which directly labels A2A striatal receptors. High receptor affinity, good selectivity and very low non-specific binding make [3H]-SCH 58261 an excellent probe for studying the A2A adenosine receptor subtype in mammalian brain.  相似文献   

3.
We have characterized the new potent and selective nonxanthine adenosine A2A receptor antagonist SCH 58261 as a new radioligand for receptor autoradiography. In autoradiographic studies using agonist radioligands for A2A receptors ([3H]CGS 21680) or A1 receptors (N6-[3H]cyclohexyladenosine), it was found that SCH 58261 is close to 800-fold selective for rat brain A2A versus A1 receptors (Ki values of 1.2 nM versus 0.8 microM). Moreover, receptor autoradiography showed that [3H]SCH 58261, in concentrations below 2 nM, binds only to the dopamine-rich regions of the rat brain, with a K(D) value of 1.4 (0.8-1.8) nM. The maximal number of binding sites was 310 fmol/mg of protein in the striatum. Below concentrations of 3 nM, the nonspecific binding was <15%. Three adenosine analogues displaced all specific binding of [3H] SCH 58261 with the following estimated Ki values (nM): 2-hex-1-ynyl-5'-N-ethylcarboxamidoadenosine, 3.9 (1.8-8.4); CGS 21680, 130 (42-405); N6-cyclohexyladenosine, 9,985 (3,169-31,462). The binding of low concentrations of SCH 58261 was not influenced by either GTP (100 microM) or Mg2+ (10 mM). The present results show that in its tritium-labeled form, SCH 58261 appears to be a good radioligand for autoradiographic studies, because it does not suffer from some of the problems encountered with the currently used agonist radioligand [3H]CGS 21680.  相似文献   

4.
1. The present study describes the direct labelling of A2A adenosine receptors in human neutrophil membranes with the potent and selective antagonist radioligand, [3H]-5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo[4,3-e]-1,2,4 triazolo[l,5-c]pyrimidine, ([3H]-SCH 58261). In addition, both receptor affinity and potency of a number of adenosine receptor agonists and antagonists were determined in binding, adenylyl cyclase and superoxide anion production assays. 2. Saturation experiments revealed a single class of binding sites with Kd and Bmax values of 1.34 nM and 75 fmol mg(-1) protein, respectively. Adenosine receptor ligands competed for the binding of 1 nM [3H]-SCH 58261 to human neutrophil membranes, with a rank order of potency consistent with that typically found for interactions with the A2A adenosine receptors. In the adenylyl cyclase and in the superoxide anion production assays the same compounds exhibited a rank order of potency identical to that observed in binding experiments. 3. Thermodynamic data indicated that [3H]-SCH 58261 binding to human neutrophils is entropy and enthalpy-driven. This finding is in agreement with the thermodynamic behaviour of antagonists binding to rat striatal A2A adenosine receptors. 4. It was concluded that in human neutrophil membranes, [3H]-SCH 58261 directly labels binding sites with pharmacological properties similar to those of A2A adenosine receptors of other tissues. The receptors labelled by [3H]-SCH 58261 mediated the effects of adenosine and adenosine receptor agonists to stimulate cyclic AMP accumulation and inhibition of superoxide anion production in human neutrophils.  相似文献   

5.
1. The present study describes for the first time the characterization of the adenosine A2A receptor in human lymphocyte membranes with the new potent and selective antagonist radioligand, [3H]-5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo [4,3-e]-1,2,4 triazolo [1,5-c] pyrimidine, ([3H]-SCH 58261). In addition, both receptor affinity and potency of reference adenosine receptor agonists and antagonists were determined in binding and adenylyl cyclase studies. 2. Saturation experiments revealed a single class of binding sites with Kd and Bmax values of 0.85 nM and 35 fmol mg-1 protein, respectively. A series of adenosine receptor ligands were found to compete for the binding of 0.8 nM [3H]-SCH 58261 to human lymphocyte membranes with a rank order of potency consistent with that typically found for interactions with the A2A-adenosine receptor. In the adenylyl cyclase assay the same compounds exhibited a rank order of potency similar to that observed in binding experiments. 3. Thermodynamic data indicate that [3H]-SCH 58261 binding to human lymphocytes is entropy and enthalpy-driven, a finding in agreement with the thermodynamic behaviour of antagonists for rat striatal A2A-adenosine receptors. 4. It is concluded that in human lymphocyte membranes [3H]-SCH 58261 directly labels binding sites showing the characteristic properties of the adenosine A2A-receptor. The presence of A2A-receptors in peripheral tissue such as human lymphocytes strongly suggests an important role for adenosine in modulating immune and inflammatory responses.  相似文献   

6.
The A3 adenosine receptor is one of the four adenosine receptors which have thus far been identified. Cloning of the A3 receptor from animal species such as rat, sheep and human has shown that there are interspecies differences in its peripheral distribution, and binding affinity for various adenosine receptor ligands. The adenosine derivative, 4-aminobenzyl-5'-N-methylcarboxamidoadenosine (AB-MECA), is a potent A3 receptor agonist which is used as a reference drug. In this report we have characterized the binding of selected adenosine receptor agonists and antagonists to HEK 293 cells transfected with the human A3 adenosine receptor using [125I]AB-MECA as radioligand. HE-NECA and NECA were the most potent compounds showing Ki values in the low nanomolar range, while the recently discovered non-xanthine A2A receptor antagonists ZM 241385, SCH 58261 and SCH 63390 showed affinity values in the micromolar range. These data further indicate the need to examine the affinity of new adenosine receptor ligands directly in human A3 receptors.  相似文献   

7.
The pharmacological profile and the anatomical localization of Ca2+ channels of the L-type were investigated in the human pulmonary artery to identify possible mechanisms involved in the regulation of the pulmonary vascular tone. Analysis was performed on slide-mounted frozen sections of human pulmonary artery using radioligand binding assay techniques associated with light microscope autoradiography. [3H]-Nicardipine was used as ligand. Human renal and right coronary arteries also were used as systemic reference arteries. Binding of [3H]-nicardipine to sections of human pulmonary artery was time-, temperature- and concentration-dependent, saturable and reversible. In the human pulmonary artery, the apparent equilibrium dissociation constant (Kd) was 0.12+/-0.02 nM and the maximum density of binding sites (Bmax) was 38.15+/-2.25 fmol/mg tissue. Kd values were 0.3+/-0.01 nM and 0.5+/-0.02 in the human renal artery and right coronary artery respectively. Bmax values were 248+/-16 fmol/mg tissue and 173+/-9.5 fmol/mg tissue in the human renal artery and right coronary artery respectively. The pharmacological profile of [3H]-nicardipine binding to sections of human pulmonary artery was consistent with the labeling of Ca2+ channels of the L-type. It was similar in the pulmonary artery and in the human renal and right coronary arteries. Light microscope autoradiography revealed a high density of [3H]-nicardipine binding sites within smooth muscle of the tunica media of human pulmonary artery as well as of human renal and right coronary arteries. A lower accumulation of the radioligand occurred in the tunica adventitia. No specific binding was noticeable in the tunica intima. Our data suggest that human pulmonary artery expresses Ca2+ channels of the L-type sensitive to dihydropyridines. These sites have similar affinity and lower density than those expressed by systemic arteries. The presence of Ca2+ channels of the L-type in human pulmonary artery suggests that their pharmacological manipulation may be considered in the treatment of pulmonary hypertension.  相似文献   

8.
Determination of the optimal assay conditions for the specific binding of a tritiated derivative of the novel potential anxiolytic drug alnespirone (S-20499, (+)-4-[N-(5-methoxy-chroman-3-yl)-N-propylamino]butyl-8-azaspiro-( 4,5)-decane-7,9-dione) allowed the demonstration that this radioligand bound with a high affinity (Kd = 0.36 nM) to a homogeneous class of sites in rat hippocampal membranes. The pharmacological properties of [3H]alnespirone specific binding sites matched exactly (r = 0.95) those of 5-HT1A receptors identified with [3H]8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) as radioligand. Furthermore, membrane binding experiments and autoradiographic labeling of tissue sections showed that the regional distribution of [3H]alnespirone specific binding sites in the rat brain and spinal cord superimposed over that of 5-HT1A receptors specifically labeled by [3H]8-OH-DPAT. However, the differential sensitivity of [3H]alnespirone and [3H]8-OH-DPAT specific binding to various physicochemical effectors (temperature, pH, Mn2+, N-ethyl-maleimide) supports the idea that these two agonist radioligands did not recognize 5-HT1A receptors exactly in the same way. These differences probably account for the reported inability of alnespirone, in contrast to 8-OH-DPAT, to induce some 5-HT1A receptor-mediated behavioural effects in rats.  相似文献   

9.
1. Radioligand binding properties of the adenosine receptor ligands, [3H]-1,3-dipropyl-8-cyclopentylxanthine ([3H]-DPCPX), and [3H]-R-phenylisopropyladenosine ([3H]-R-PIA) were investigated in frog brain membranes. 2. The specific binding of the adenosine antagonist, [3H]-DPCPX to frog brain membranes showed one binding site with Kd and Bmax values of 43.8 nM and 0.238 +/- 0.016 pmol mg-1 protein, respectively. Guanosine 5'-triphosphate (GTP, 100 microM) decreased to 72 +/- 7% and Mg2+ (8 mM) increased to 121 +/- 3% [3H]-DPCPX (40 nM) binding to frog brain membranes. 3. [3H]-DPCPX saturation binding experiments performed in the presence of Mg2+ (8 mM), or in the presence of GTP showed that Mg2+ ions decreased the Kd value of [3H]-DPCPX to 14 nM, and GTP increased this value to 65.6 nM. Bmax values were not significantly (P > 0.05) modified (0.261 +/- 0.018 pmol mg-1 protein, with Mg2+, and 0.266 +/- 0.026 pmol mg-1 protein, in presence of GTP) by the presence of Mg2+ or GTP. 4. The specific binding of [3H]-R-PIA (15 nM) was decreased to 37 +/- 6% by GTP (100 microM) and increased to 123 +/- 4% by Mg2+ (8 mM). [3H]-R-PIA saturation binding experiments performed in the presence of Mg2+ (8 mM) showed one binding site with Kd and Bmax values of 0.9 nM and 0.229 +/- 0.008 pmol mg-1 of protein, respectively. 5. The concentration-inhibition curves of adenosine agonists and antagonists versus [3H]-DPCPX binding showed the following order of potencies: CPA> R-PIA~ NECA> S-PIA> > CGS 21680, for the agonists, and XAC ~-DPCPX> > XCC> PACPX, for the antagonists.6. The present results suggest that the adenosine binding site in the frog brain membranes is G-protein coupled, but that the antagonist affinities and the pharmacological profile is different from the Al or A2 adenosine receptors.  相似文献   

10.
The binding of [123I]AM251 (a radioiodinated analog of the cannabinoid CB1 receptor antagonist SR141716A) was compared to that of [3H]CP 55,940 in mouse and rat brain preparations. Scatchard analysis of the binding of [123I]AM251 and [3H]CP 55,940 to membranes prepared from mouse cerebellum, striatum and hippocampus yielded similar Bmax values (15-41 pmol/g wet wt tissue). Kd values were lower for [123I]AM251 (0.23-0.62 nM) than for [3H]CP 55,940 (1.3-4 nM). CP 55,940 and SR141716A increased dissociation of [123I]AM251 from binding sites in mouse cerebellar homogenates to a similar extent. The structurally dissimilar cannabinoid receptor ligands THC, methanandamide, WIN 55, 212-2, CP 55,940 and SR141716A were each able to fully compete with binding of both [123I]AM251 and [3H]CP 55,940 in mouse cerebellum. In vitro autoradiography demonstrated that the distribution of binding sites for [123I]AM251 in rat brain was very similar to published distributions of binding sites for [3H]CP 55,940. Together, these observations suggest that AM251 binds to the same site (the cannabinoid CB1 receptor) in rodent brains as CP 55,940. However, the binding site domains which interact with AM251 and CP 55,940 may not be identical, since IC50 values for cannabinoid receptor ligands depended on whether [123I]AM251 or [3H]CP 55,940 was used as radioligand.  相似文献   

11.
1. Binding of the B1 bradykinin receptor radioligand, [3H]-des-Arg10-kallidin (-KD) and the B2 receptor radioligand [3H]-bradykinin (-BK) was investigated in membranes prepared from WI38 human foetal lung fibroblasts. 2. One-site analysis of the saturation data for [3H]-des-Arg10-KD gave an equilibrium dissociation constant (KD) value of 0.51 +/- 0.12 nM and a maximum receptor density (Bmax) of 260 +/- 49 fmol mg-1 of protein. [3H]-des-Arg10-KD binding was displaced by ligands in the order: des-Arg10-KD > KD > > des-Arg9[Leu8]-BK > des-Arg9-BK > Hoe 140 > > BK, implying that it was binding selectively to B1 receptors. 3. One-site analysis of the binding of [3H]-BK to W138 membranes indicated that it had a KD value of 0.25 +/- 0.06 nM and a Bmax of 753 +/- 98 fmol mg-1 of protein. The potencies for displacement of [3H]-BK binding were: Hoe 140 > > BK = KD > > > des-Arg10-KD = des-Arg9[Leu8]-BK = des-Arg9-BK, which was consistent with binding to B2 receptors. 4. This is the first characterization of [3H]-des-Arg10-KD binding to include both kinetic and equilibrium data, and demonstrates that [3H]-des-Arg10-KD has a high affinity for human B1 bradykinin receptors and is sufficiently selective to be used as a radioligand for B1 receptors in human cells or tissues expressing an excess of B2 BK receptors.  相似文献   

12.
The recently developed 5-HT2A receptor selective antagonist [3H]MDL100,907 ((+/-)2,3-dimethoxyphenyl-1-[2-(4-piperidine)-methanol]) has been characterized as a radioligand for the autoradiographic visualization of these receptors. [3H]MDL100,907 binding to rat brain tissue sections was saturable, had sub-nanomolar affinity (Kd = 0.2-0.3 nM), and presented a pharmacological profile consistent with its binding to 5-HT2A receptors (rank order of affinity for [3H]MDL100,907-labelled receptors: MDL100,907 > spiperone > ketanserin > mesulergine). The distribution of receptors labelled by [3H]MDL100,907 was compared to the autoradiographical patterns obtained with [3H]Ketanserin, [3H]Mesulergine, and [3H]RP62203 (N-[3-[4-(4-fluorophenyl)piperazin-1-y1]propyl]-1,8-naphtalenes ultam) and to the distribution of 5-HT2A receptor mRNA as determined by in situ hybridization. As opposed to the other radioligands, [3H]MDL100,907 labelled a single population of sites (5-HT2A receptors) and presented extremely low levels of non-specific binding. The close similarity of the distributions of [3H]MDL100,907-labelled receptors and 5-HT2A mRNA further supports the selectivity of this radioligand for 5-HT2A receptors and suggests a predominant somatodendritic localization of these receptors. The present results point to [3H]MDL100,907 as the ligand of choice for the autoradiographic visualization of 5-HT2A receptors.  相似文献   

13.
The A2a-adenosine binding subunit from rabbit striatal membranes was solubilized using 1% 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate and was characterized using the antagonist radioligand [3H]8-[4-[[[[2-aminoethyl)amino]carbonyl]methyl]oxy] phenyl]-1,3-dipropylxanthine (XAC). The solubilized receptor was very stable, with 55% of the specific [3H]XAC binding remaining after storage for 15 days at 4 degrees C. The dissociation constant (Kd) for binding of [3H]XAC to solubilized A2 receptors was determined in saturation studies to be 4.0 nM, with a Bmax of 600 fmol/mg protein. Xanthine inhibitors displaced the specific binding of the adenosine antagonist [3H]XAC (in the presence of 50 nM 8-cyclopentyl-1,3-dipropylxanthine) at 25 degrees C, with Ki values consonant with the expected affinities at A2a receptors. Binding of [3H]XAC (1 nM) or the adenosine agonist [3H]2-(carboxyethylphenylethylamino)adenosine-5'-N-ethyl carboxamide (5 nM) to A2a receptors was diminished in the presence of 0.1 M Na+ in both membranes and solubilized preparations. Agonist binding was increased (by 280% for membranes and 180% for solubilized receptors), and antagonist binding was decreased in the presence of 10 mM Mg2+. Displacement of [3H]XAC by the agonist (R)-N6-phenylisopropyladenosine was biphasic, corresponding to high (IC50 = 188 nM, RH = 30%) and low (IC50 = 9730 nM, RL = 70%) affinity sites. Preincubation with 100 microM GTP (10 mM Mg2+) converted the high affinity binding to low affinity, suggesting that receptor and G-protein are dissociated by the guanine nucleotide. The solubilized receptor was more easily inactivated by exposure to the reducing agent dithiothreitol (IC50 = 3 mM) than in membranes (IC50 = 220 mM), suggesting increased accessibility of structurally essential disulfide bridges.  相似文献   

14.
Opioid receptor binding properties of [3H]Tyr-D-Ala-Phe-Phe-NH2 (TAPP) were characterized in rat brain and Chinese hamster ovary (CHO) cells expressing the rat mu-receptor. In rat brain, [3H]TAPP labeled a single class of opioid sites with a dissociation constant (Kd) of 0.31 nM and maximal number of binding sites (Bmax) of 119 fmol/mg protein. In CHO-mu/1 cell membranes, the Kd and Bmax values were 0.78 nM and 1806 fmol/mg protein, respectively. Binding to rat brain was demonstrated to be pharmacologically identical to that obtained with CHO-mu/1 cell membranes and modulated by Na+ ions and guanine nucleotides. The high affinity and selectivity of [3H]TAPP together with its low non-specific binding make this radioligand a useful tool for labeling the native and cloned mu-opioid receptor.  相似文献   

15.
The binding of the D2-like agonists, (+)-7-hydroxy-N,N-di-n-[3H]propyl-2-aminotetralin (7-OH-DPAT) and [3H]pramipexole (2-amino-4,5,6-tetrahydro-6-propylaminobenzthiazole; MIRAPEX) were determined in membranes from adult male Sprague-Dawley and Fischer-344 rats. Saturation analysis, which optimized binding to D3 receptors, revealed 3-6 fold differences in Bmax values between the two radioligands with no change in affinity. [3H](+)7-OH-DPAT labeled 41.4+/-4.1 to 61.8+/-3.0 fmol/mg protein in nucleus accumbens and striatal homogenates, yet [3H]pramipexole labeled only 7.0+/-1.2 to 18.9+/-5.3 fmol/mg protein. Regional differences with both radioligands were observed in Fischer-344 rats; the striatum exhibited a 52%-69% greater density of sites in comparison to the nucleus accumbens. These data suggest that D3 receptor density can vary significantly between animal strains depending on the radioligand used, and [3H]pramipexole identifies a different ratio of sites in the striatum and nucleus accumbens compared to [3H](+)7-OH-DPAT.  相似文献   

16.
A radioligand assay employing tritiated gonadotropin-releasing hormone, [3H-Pro9]GnRH or [3H-pGlu1]GnRH is used to investigate the binding of GnRH, its agonists, and its antagonists to male rat anterior pituitary homogenates. The tritiated GnRH purified by high pressure liquid chromatography and stored in 10 mM HOAc is stable for binding for at least 14 weeks. It is found that there is at least one high affinity site with an observed Kd of congruent to 2 nM and another low affinity site whose Kd is congruent to 1 microM. Only approximately 25% of the total specific binding is to the low affinity site. At room temperature, the binding is reduced to 50% of that at 0 C, and at 37 C, there is no measurable binding. Bacitracin has no effect on the binding at any temperature. Maximum binding occurs between pH 7.5--8.5. Quantitative relative binding potencies of several agonists and antagonists are given. These potencies closely parallel their biological potencies, but all antagonists have higher absolute binding affinities when compared to their potencies to inhibit GnRH-mediated LH secretion in vitro.  相似文献   

17.
The present study describes the characterization of the binding properties and autoradiographic distribution of a new nonpeptide antagonist of neurotensin receptors, [3H]SR 142948A (2-[[5-(2,6-dimethoxyphenyl)-1-(4-(N-(3-dimethylaminopropyl)-N-methyl carbamoyl)-2-isopropylphenyl)-1H-pyrazole-3-carbonyl]-amino]-ad amantane-2-carboxylic acid, hydrochloride), in the rat brain. The binding of [3H]SR 142948A in brain membrane homogenates was specific, time-dependent, reversible and saturable. [3H]SR 142948A bound to an apparently homogeneous population of sites, with a Kd of 3.5 nM and a Bmax value of 508 fmol/mg of protein, which was 80% higher than that observed in saturation experiments with [3H]neurotensin. [3H]SR 142948A binding was inhibited by SR 142948A, the related nonpeptide receptor antagonist, SR 48692 (2-[[1-(7-chloroquinolin-4-yl)-5-(2,6-dimethoxyphenyl)-1H-pyrazole -3-carbonyl]amino]-adamantane-2-carboxylic acid) and neurotensin. Saturation and competition studies in the presence or absence of the histamine H1 receptor antagonist, levocabastine, revealed that [3H]SR 142948A bound with similar affinities to both the levocabastine-insensitive neurotensin NT1 receptors (20% of the total binding population) and the recently cloned levocabastine-sensitive neurotensin NT2 receptors (80% of the receptors) (Kd = 6.8 and 4.8 nM, respectively). The regional distribution of [3H]SR 142948A binding in the rat brain closely matched the distribution of [125I]neurotensin binding. In conclusion, these findings indicate that [3H]SR 142948A is a new potent antagonist radioligand which recognizes with high affinity both neurotensin NT1 and NT2 receptors and represents thus an excellent tool to study neurotensin receptors in the rat brain.  相似文献   

18.
CP-060S, (-)-(S)-2-[3,5-bis(1,1-dimethylethyl)-4-hydroxypheny1]-3-[3-[N-met hyl-N-[2-(3,4-methylenedioxyphenoxy)ethyl]amino]propyl]-1,3-thi azolidin-4-one hydrogen fumarate is a novel cardioprotective drug, which is able to prevent Na+-, Ca2+-overload and also has Ca2+ channel blocking activity. The latter action of CP-060S was characterized by radioligand binding experiments with rat cardiac membranes in terms of the interaction with the three principal binding sites on the L-type Ca2+ channel, which bind such drugs as the 1,4-dihydropyridines, phenylalkylamines and benzothiazepines. CP-060S exhibited complete and concentration-dependent inhibition of [3H](+)-PN200-110, [3H](-)-desmethoxyverapamil and [3H]cis-(+)-diltiazem binding to their specific binding sites. Saturation studies showed that CP-060S increased the Kd of [3H](+)-PN200-110 and [3H](-)-desmethoxyverapamil without causing a significant change in the maximum binding density. The dissociation kinetics of the three radioligands were accelerated by CP-060S. These results suggest that CP-060S interacts with a novel binding site on the L-type Ca2+ channel and has a negative allosteric interaction with the three principal binding sites for the 1,4-dihydropyridines, phenylalkylamines and benzothiazepines.  相似文献   

19.
The pineal organ of vertebrates produces melatonin and adenosine. In lower vertebrates, adenosine modulates melatonin production. We report herein that 2-chloro-cyclopentyl-[3H]-adenosine ([3H]CCPA: adenosine A1 receptor agonist) and [3H]-cyclopentyl-1,3-dipropylxanthine ([3H]DPCPX: adenosine A1 receptor antagonist), bind specifically to sheep pineal membranes. Binding of [3H]CCPA reached equilibrium at 90 min and dissociation revealed the presence of two components. Saturation analysis suggested the presence of a single population of binding sites (Kd = 1.67 +/- 0.06 nM, Bmax = 2386 fmol/mg protein). Binding was sensitive to GTP and GTPgammaS. Binding of [3H]DPCPX reached equilibrium at 60 min and dissociation was monophasic. Saturation analysis revealed a single population of binding sites (Kd = 5.8 +/- 1.12 nM, Bmax = 1116 fmol/mg protein). The specificity of the [3H]-analogues used and the rank order potency of the competitors tested in the competition experiments suggested the presence of A1 receptors. Future investigations are necessary to elucidate the significance of the differences observed between the binding properties of the adenosine A1 receptor agonist and adenosine A1 receptor antagonist.  相似文献   

20.
1. The pharmacological profile of adenosine A1 receptors in human, guinea-pig, rat and mouse brain membranes was characterized in a radioligand binding assay by use of the receptor selective antagonist, [3H]-8-cyclopentyl-1,3-dipropylxanthine ([3H]-DPCPX). 2. The affinity of [3H]-DPCPX binding sites in rat cortical and hippocampal membranes was similar. Binding site affinity was higher in rat cortical membranes than in membranes prepared from guinea-pig cortex and hippocampus, mouse cortex and human cortex. pKD values (M) were 9.55, 9.44, 8.85, 8.94, 8.67, 9.39 and 8.67, respectively. The binding site density (Bmax) was lower in rat cortical membranes than in guinea-pig or human cortical membranes. 3. The rank order of potency of seven adenosine receptor agonists was identical in each species. With the exception of 5'-N-ethylcarboxamidoadenosine (NECA), agonist affinity was 3.5-26.2 fold higher in rat cortical membranes than in human and guinea-pig brain membranes; affinity in rat and mouse brain membranes was similar. While NECA exhibited 9.3 fold higher affinity in rat compared to human cortical membranes, affinity in other species was comparable. The stable GTP analogue, Gpp(NH)p (100 microM) reduced 2-chloro-N6-cyclopentyladenosine (CCPA) affinity 7-13.9 fold, whereas the affinity of DPCPX was unaffected. 4. The affinity of six xanthine-based adenosine receptor antagonists was 2.2-15.9 fold higher in rat cortical membranes compared with human or guinea-pig membranes. The rank order of potency was species-independent. In contrast, three pyrazolopyridine derivatives, (R)-1-[(E)-3-(2-phenylpyrazolo[1,5-a]pyridin-3-yl) acryloyl]-2-piperidine ethanol (FK453), (R)-1-[(E)-3-(2-phenylpyrazolo[1,5-a]pyridin-3-yl) acryloyl]-piperidin-2-yl acetic acid (FK352) and 6-oxo-3-(2-phenylpyrazolo[1,5-a]pyridin-3-yl)-1(6H)-pyridazinebutyric acid (FK838) exhibited similar affinity in human, guinea-pig, rat and mouse brain membranes. pKi values (M) for [3H]-DPCPX binding sites in human cortical membranes were 9.31, 7.52 and 7.92, respectively. 5. Drug affinity for adenosine A2A receptors was determined in a [3H]-2-[4-(2-carboxyethyl)phenethylamino]-5'-N-ethylcarboxamido ade nosine ([3H]-CGS 21680) binding assay in rat striatal membranes. The pyrazolopyridine derivatives, FK453, FK838 and FK352 exhibited pKi values (M) of 5.90, 5.92 and 4.31, respectively, compared with pKi values of 9.31, 8.18 and 7.57 determined in the [3H]-DPCPX binding assay in rat cortical membranes. These novel pyrazolopyridine derivatives therefore represent high affinity, adenosine A1 receptor selective drugs that, in contrast to xanthine based antagonists, exhibit similar affinity for [3H]-DPCPX binding sites in human, rat, mouse and guinea-pig brain membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号