首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Ras and Raf-1 are key proteins involved in the transmission of developmental and proliferative signals generated by receptor and nonreceptor tyrosine kinases. Genetic and biochemical studies demonstrate that Raf-1 functions downstream of Ras in many signaling pathways. Although Raf-1 directly associates with GTP-bound Ras, an effect of this interaction on Raf-1 activity in vivo has not been established. To examine the biological consequence of the Ras/Raf-1 interaction in vivo, we set out to identify key residues of Raf-1 required for Ras binding. In this report, we show that a single amino acid mutation in Raf-1 (Arg89 to Leu) disrupted the interaction with Ras in vitro and in the yeast two-hybrid system. This mutation prevented Ras-mediated but not tyrosine kinase-mediated enzymatic activation of Raf-1 in the baculovirus/Sf9 expression system. Furthermore, kinase-defective Raf-1 proteins containing the Arg89-->Leu mutation were no longer dominant-inhibitory or capable of blocking Ras-mediated signal transduction in Xenopus laevis oocytes. These results demonstrate that the association of Raf-1 and Ras modulates both the kinase activity and the biological function of Raf-1 and identify Arg89 as a critical residue involved in this interaction. In addition, the finding that tyrosine kinases can stimulate the enzymatic activity of Raf-1 proteins containing a mutation at the Ras-interaction site suggests that Raf-1 can be activated by Ras-independent pathways.  相似文献   

2.
The exchange of an alanine with a proline residue in position 31 of the loop region of the dimeric 4-alpha-helical-bundle protein ROP causes a reduction in the alpha-helix content of 7% and a reduction in stability of about 40% compared to the wild type parameters. The Gibbs energy of unfolding by denaturants extrapolated linearly to zero denaturant concentration, delta G0D (buffer, 25 degrees C), has been determined to be 43 kJ (mol dimer)-1. The corresponding ROPwt value is 72 kJ (mol dimer)-1 (Steif et al., 1993). The extrapolated delta G0D values obtained from urea and GdmHCI un- and refolding studies are identical within error limits. Deconvolution of the stability values into enthalpy and entropy terms resulted in the following parameters. At T1/2 = 43 degrees C (Cprotein = 0.05 mg.ml-1) the ROP A31P mutant is characterized by delta Hv.H.0 = 272 kJ (mol dimer)-1, delta Cp = 7.2 kJ (mol dimer)-1 K-1, delta S0 = 762 J (mol dimer)-1 K-1. These parameters are only approximately 50% as large as the corresponding values of ROPwt. We assume that the significant reduction in stability reflects the absence of at least one hydrogen bond as well as deformation of the protein structure. This interpretation is supported by the reduction in the change in heat capacity observed for the A31P mutant relative to ROPwt, by the increased aggregation tendency of the mutant and by the reduced specific CD absorption at 222 nm. All results support the view that in the case of ROP protein the loop region plays a significant role in the maintenance of native structure and conformational stability.  相似文献   

3.
Total spinal anesthesia following intrathoracic intercostal nerve blocks with bupivacaine performed for postoperative pain relief during thoracotomy is described. Possible mechanisms for this complication include: (1) inadvertent placement of the needle through an intervertebral foramen, (2) puncture of a long dural cuff, and (3) intraneural injection with central spread. Recognition of this potential complication is important, and facilities for proper support must be available.  相似文献   

4.
Several observations indicate that the Raf-1 kinase is a downstream effector of protein kinase C-epsilon (PKC epsilon). We recently have shown that Raf-1 is constitutively activated in PKC epsilon transformed Rat6 fibroblasts, and transformation can be reverted by expression of a dominant negative Raf-1, but not a dominant negative Ras mutant (Cacace et al., 1996). Cai et al. (1997) demonstrated that PKC epsilon induced proliferation of NIH3T3 cells is independent of Ras or Src, but depends on Raf-1. These authors further suggested that PKC epsilon activates Raf-1 by direct phosphorylation. Here we have investigated the functional interaction between PKC epsilon and Raf-1. PKC epsilon, but not PKC alpha, was found to bind to the Raf-1 kinase domain. The association appeared to be direct, as it could be reconstituted in vitro with purified proteins. Raf-1 and PKC epsilon could be co-precipitated from Sf-9 insect cells and PKC epsilon transformed NIH313 cells (NIH/epsilon). The association was negatively regulated by ATP in vitro and by TPA treatment in NIH/epsilon cells, but not in Sf-9 insect cells. Raf-1 was constitutively activated in NIH/epsilon cells. However, using coexpression experiments in Sf-9 cells and transiently transfected A293 cells we did not obtain any evidence for a direct activation of Raf-1 by PKC epsilon. PKC epsilon did not induce translocation of Raf-1 to the membrane. Furthermore, PKC epsilon did not activate Raf-1 nor enhance the kinase activity of Raf-1 that had been pre-activated by coexpression of Ras or the Lck tyrosine kinase. In contrast, conditioned media from PKC epsilon transformed cells induced a robust activation of Raf-1. This activation could be partially reproduced by recombinant TGFbeta, a growth factors secreted by PKC epsilon transformed Rat6 cells. In conclusion, our results suggest that PKC epsilon stimulates Raf-1 indirectly by inducing the production of autocrine growth factors.  相似文献   

5.
Postural alignment is not an inherent trait. Proper alignment is acquired through training postural muscle groups. This training is based on scientific principles associated with improving the physiological parameters of muscle mechanics. The purpose of this report is to describe and demonstrate the application of exercise physiology training principles to the improvement of postural alignment, which may enhance vocal performance. Specific exercise principles are explained and key concepts highlighted. Selected exercises for training postural muscles are presented to assist in establishing techniques that result in the expected adaptations. The application of training principles to postural muscles has been shown to improve postural alignment by strengthening synergistic muscles and establishing a balance between the agonistic and antagonistic activity of these muscles. Since posture has been well established as an important component of vocal performance, the application of these principles to vocal training seems to warrant the attention of vocal trainers and performers.  相似文献   

6.
This paper describes the molecular modeling of leukotriene CysLT1 (or LTD4) receptor antagonists. Several different structural classes of CysLT1 antagonists were superimposed onto the new and highly rigid CysLT1 antagonist 8-carboxy-3'-[2-(2-quinolinyl)ethenyl]flavone (1, VUF 5017) to generate a common pharmacophoric arrangement. On the basis of known structure-activity relationships of CysLT1 antagonists, the quinoline nitrogen (or a bioisosteric equivalent thereof) and an acidic function were taken as the matching points. In order to optimize the fitting of acidic moieties of all antagonists, an arginine residue from the receptor was proposed as the interaction site for the acidic moieties. Incorporation of this amino acid residue into the model revealed additional interactions between the guanidine group and the nitrogen atoms of quinoline-containing CysLT1 antagonists. In some cases, the arginine may even interact with pi-clouds of phenyl residues of CysLT1 antagonists. The alignment of Montelukast (MK-476) suggests the presence of an additional pocket in the binding site for CysLT1 antagonists. The derived model should be useful for a better understanding of the molecular recognition of the leukotriene CysLT1 receptor.  相似文献   

7.
OBJECTIVE: To develop a method for the detection of bilateral Horner's syndrome in patients with bilateral interruption of the cervical sympathetic pathway or widespread autonomic neuropathy. METHODS: Darkness pupil diameters and redilatation times during light reflexes have been recorded with infrared TV pupillometry in 65 healthy subjects, 47 patients with unilateral Horner's syndrome, and 20 patients with bilateral Horner's syndrome. The aetiologies of the last group were diabetic autonomic neuropathy (three cases), amyloidosis (four), pure autonomic failure (PAF) (four), dopamine-beta-hydroxylase deficiency (two), and one case each of hereditary sensory and autonomic neuropathy (HSAN) type III, carcinomatous sympathetic neuropathy, familial dysautonomia, multiple system atrophy, Anderson-Fabry disease, and anterior spinal artery thrombosis at C5,6 and one had had bilateral cervical sympathectomies. RESULTS: Darkness diameters on the affected side were below normal in 12 patients with unilateral Horner's syndrome, the measurement yielding only 26% sensitivity for detection of the condition. By contrast, the time taken to reach three quarter recovery in the light reflex (T3/4) was abnormally prolonged (redilatation lag) in 33 of the same eyes. The measurement yielded 70% sensitivity and 95% specificity for detection of the condition. In 20 cases, diagnosed on clinical grounds as having bilateral Horner's syndrome of various aetiologies, pupil diameters were abnormally small on both sides in five and on one side in three patients. Fourteen of these patients had significant redilatation lag in both eyes, five patients in one eye, and one patient had it in neither eye. Measurement of redilatation lag was therefore a more sensitive diagnostic test than pupil diameter in both unilateral and bilateral Horner's syndrome. CONCLUSIONS: Provided that the pupils are not tonic, bilateral Horner's syndrome can be diagnosed on the basis of redilatation lag. It occurs clinically in some generalised autonomic neuropathies and with interruption of the local sympathetic nerve supplies to the two eyes.  相似文献   

8.
The serine/threonine kinase Raf-1 functions downstream from Ras to activate mitogen-activated protein kinase kinase, but the mechanisms of Raf-1 activation are incompletely understood. To dissect these mechanisms, wild-type and mutant Raf-1 proteins were studied in an in vitro system with purified plasma membranes from v-Ras- and v-Src-transformed cells (transformed membranes). Wild-type (His)6- and FLAG-Raf-1 were activated in a Ras- and ATP-dependent manner by transformed membranes; however, Raf-1 proteins that are kinase defective (K375M), that lack an in vivo site(s) of regulatory tyrosine (YY340/341FF) or constitutive serine (S621A) phosphorylation, that do not bind Ras (R89L), or that lack an intact zinc finger (CC165/168SS) were not. Raf-1 proteins lacking putative regulatory sites for an unidentified kinase (S259A) or protein kinase C (S499A) were activated but with apparently reduced efficiency. The kinase(s) responsible for activation by Ras or Src may reside in the plasma membrane, since GTP loading of plasma membranes from quiescent NIH 3T3 cells (parental membranes) induced de novo capacity to activate Raf-1. Wild-type Raf-1, possessing only basal activity, was not activated by parental membranes in the absence of GTP loading. In contrast, Raf-1 Y340D, possessing significant activity, was, surprisingly, stimulated by parental membranes in a Ras-independent manner. The results suggest that activation of Raf-1 by phosphorylation may be permissive for further modulation by another membrane factor, such as a lipid. A factor(s) extracted with methanol-chloroform from transformed membranes or membranes from Sf9 cells coexpressing Ras and SrcY527F significantly enhanced the activity of Raf-1 Y340D or active Raf-1 but not that of inactive Raf-1. Our findings suggest a model for activation of Raf-1, wherein (i) Raf-1 associates with Ras-GTP, (ii) Raf-1 is activated by tyrosine and/or serine phosphorylation, and (iii) Raf-1 activity is further increased by a membrane cofactor.  相似文献   

9.
The Malthus-AT system provided a satisfactory method for examining the effects of permeabilizing agents on the activity of sub-inhibitory concentrations of antibacterial agents against Pseudomonas aeruginosa G48. Under this system, disodium edetate potentiated the activity of chlorhexidine diacetate (CHA), cetylpyridinium chloride, para-chlorometaxylenol and triclosan. Nitrilotriacetic acid enhanced the activity of some of the antibacterials tested, whereas sodium polyphosphate markedly reduced the efficacy of CHA.  相似文献   

10.
A reinvestigation of the primary structure of Qbeta coat protein between positions 1 and 60 was undertaken to resolve two discrepancies between the published amino acid seuqence (Maita, T., and Konigsberg, W. (1971) J. Biol. Chem. 246, 5003-5024) and the cognate nucleotide sequence recently determined in our laboratory (C. Escarmis and M. A. Billeter, unpublished results). The 22nd amino acid was asparagine rather than aspartic acid, and an additional amino acid, serine, was present between proline in position 55 and arginine in position 56. The revised structure agrees with the nucleotide sequence determined so far.  相似文献   

11.
We have identified mutations in Raf-1 that increase binding to Ras. The mutations were identified making use of three mutant forms of Ras that have reduced Raf-1 binding (Winkler, D. G., Johnson, J. C., Cooper, J. A., and Vojtek, A. B. (1997) J. Biol. Chem. 272, 24402-24409). One mutation in Raf-1, N64L, suppresses the Ras mutant R41Q but not other Ras mutants, suggesting that this mutation structurally complements the Ras R41Q mutation. Missense substitutions of residues 143 and 144 in the Raf-1 cysteine-rich domain were isolated multiple times. These Raf-1 mutants, R143Q, R143W, and K144E, were general suppressors of three different Ras mutants and had increased interaction with non-mutant Ras. Each was slightly activated relative to wild-type Raf-1 in a transformation assay. In addition, two mutants, R143W and K144E, were active when tested for induction of germinal vesicle breakdown in Xenopus oocytes. Interestingly, all three cysteine-rich domain mutations reduced the ability of the Raf-1 N-terminal regulatory region to inhibit Xenopus oocyte germinal vesicle breakdown induced by the C-terminal catalytic region of Raf-1. We propose that a direct or indirect regulatory interaction between the N- and C-terminal regions of Raf-1 is reduced by the R143W, R143Q, and K144E mutations, thereby increasing access to the Ras-binding regions of Raf-1 and increasing Raf-1 activity.  相似文献   

12.
The Raf protein kinases function downstream of Ras guanine nucleotide-binding proteins to transduce intracellular signals from growth factor receptors. Interaction with Ras recruits Raf to the plasma membrane, but the subsequent mechanism of Raf activation has not been established. Previous studies implicated hydrolysis of phosphatidylcholine (PC) in Raf activation; therefore, we investigated the role of the epsilon isotype of protein kinase C (PKC), which is stimulated by PC-derived diacylglycerol, as a Raf activator. A dominant negative mutant of PKC epsilon inhibited both proliferation of NIH 3T3 cells and activation of Raf in COS cells. Conversely, overexpression of active PKC epsilon stimulated Raf kinase activity in COS cells and overcame the inhibitory effects of dominant negative Ras in NIH 3T3 cells. PKC epsilon also stimulated Raf kinase in baculovirus-infected Spodoptera frugiperda Sf9 cells and was able to directly activate Raf in vitro. Consistent with its previously reported activity as a Raf activator in vitro, PKC alpha functioned similarly to PKC epsilon in both NIH 3T3 and COS cell assays. In addition, constitutively active mutants of both PKC alpha and PKC epsilon overcame the inhibitory effects of dominant negative mutants of the other PKC isotype, indicating that these diacylglycerol-regulated PKCs function as redundant activators of Raf-1 in vivo.  相似文献   

13.
We have analyzed HLA class II alleles in a group of 153 Czech children with rheumatoid arthritis by PCR and hybridization with oligonucleotide probes. When we try to find a common sequence for all DRB1 alleles involved in juvenile and adult arthritis, we can notice hydrophobic amino acid at position 74, which is present in all these alleles, but not in nonsusceptible alleles, where is the hydrophilic amino acid at position 74. In our model, we speculate that the hydrophilic amino acid at position 74 creates a such kind of epitope which is not suitable for rheumatoid-associated peptides or T cells, and only hydrophobic amino acid can permit binding of these peptides or recognition by certain T cells. Analyses of the DPB1 sequences have shown that alleles which have a negatively charged amino acid at position 69, are more frequent in pauciarticular patients while those with a positively charged amino acid are more frequent in polyarticular patients. A positively charged amino acid at position 69 might present the same rheumatoid associated peptide as susceptible DRB1 alleles. The presence of more rheumatoid-associated peptide on the cell surface may cause conversion to more severe polyarticular forms. A negatively charged amino acid at position 69 could not present this peptide and a low concentration of the peptide on the cell surface presented just by DRB1 molecules keeps disease in a relatively benign condition of pauciarticular forms.  相似文献   

14.
N-Linked glycosylation is a common form of protein processing that can profoundly affect protein expression, structure, and function. N-Linked glycosylation generally occurs at the sequon Asn-X-Ser/Thr, where X is any amino acid except Pro. To assess the impact of the X amino acid on core glycosylation, rabies virus glycoprotein variants were generated by site-directed mutagenesis with each of the 20 common amino acids substituted at the X position of an Asn-X-Ser sequon. The efficiency of core glycosylation at the sequon in each variant was quantified in a rabbit reticulocyte lysate cell-free translation system supplemented with canine pancreas microsomes. The presence of Pro at the X position completely blocked core glycosylation, whereas Trp, Asp, Chi, and Leu were associated with inefficient core glycosylation. The other variants were more efficiently glycosylated, and several were fully glycosylated. These findings demonstrate that the X amino acid is an important determinant of N-linked core-glycosylation efficiency.  相似文献   

15.
Farnesyl diphosphate (FPP) synthase catalyzes consecutive condensations of isopentenyl diphosphate with allylic substrates to give FPP, C-15 compound, as a final product and does not catalyze a condensation beyond FPP. Recently, it was observed that, in Bacillus stearothermophilus FPP synthase, a replacement of tyrosine with histidine at position 81, which is located on the fifth amino acid before the first aspartate-rich motif, caused the mutated FPP synthase to catalyze geranylgeranyl diphosphate (C-20) synthesis (Ohnuma, S.-i., Nakazawa, T., Hemmi, H., Hallberg, A.-M., Koyama, T., Ogura, K., and Nishino, T. (1996) J. Biol. Chem. 271, 10087-10095). Thus, we constructed 20 FPP synthases, each of which has a different amino acid at position 81, and analyzed them. All enzymes except for Y81P can catalyze the condensations of isopentenyl diphosphate. The final products and the product distributions are different from each other. Y81A, Y81G, and Y81S can produce hexaprenyl diphosphate (C-30) as their final product. The final product of Y81C, Y81H, Y81I, Y81L, Y81N, Y81T, and Y81V are geranylfarnesyl diphosphate (C-25), and Y81D, Y81E, Y81F, Y81K, Y81M, Y81Q, and Y81R cannot produce polyprenyl diphosphates more than geranylgeranyl diphosphate. Substitution of tryptophan does not affect the product specificity of FPP synthase. The average chain length of products is inversely proportional to the accessible surface area of substituted amino acid. However, no significant relation between the final chain length and the kinetic constants Km and Vmax are observed. These observations strongly indicate that the amino acid does not come into contact with the substrates but directly contacts the omega-terminal of an elongating allylic product. This interaction must prevent further condensation of isopentenyl diphosphate.  相似文献   

16.
17.
Growth factors activate mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinases (ERKs) and Jun kinases (JNKs). Although the signaling cascade from growth factor receptors to ERKs is relatively well understood, the pathway leading to JNK activation is more obscure. Activation of JNK by epidermal growth factor (EGF) or nerve growth factor (NGF) was dependent on H-Ras activation, whereas JNK activation by tumor necrosis factor alpha (TNF-alpha) was Ras-independent. Ras activates two protein kinases, Raf-1 and MEK (MAPK, or ERK, kinase) kinase (MEKK). Raf-1 contributes directly to ERK activation but not to JNK activation, whereas MEKK participated in JNK activation but caused ERK activation only after overexpression. These results demonstrate the existence of two distinct Ras-dependent MAPK cascades--one initiated by Raf-1 leading to ERK activation, and the other initiated by MEKK leading to JNK activation.  相似文献   

18.
HAH1 is a 68-amino acid protein originally identified as a human homologue of Atx1p, a multi-copy suppressor of oxidative injury in sod1 delta yeast. Molecular modeling of HAH1 predicts a protein structure of two alpha-helices overlaying a four-stranded antiparallel beta-sheet with a potential metal binding site involving two conserved cysteine residues. Consistent with this model, in vitro studies with recombinant HAH1 directly demonstrated binding of Cu(I), and site-directed mutagenesis identified these cysteine residues as copper ligands. Expression of wild type and mutant HAH1 in atx1 delta yeast revealed the essential role of these cysteine residues in copper trafficking to the secretory compartment in vivo, as expression of a Cys-12/Cys-15 double mutant abrogated copper incorporation into the multicopper oxidase Fet3p. In contrast, mutation of the highly conserved lysine residues in the carboxyl terminus of HAH1 had no effect on copper trafficking to the secretory pathway but eliminated the antioxidant function of HAH1 in sod1 delta yeast. Taken together, these data support the concept of a unique copper coordination environment in HAH1 that permits this protein to function as an intracellular copper chaperone mediating distinct biological processes in eucaryotic cells.  相似文献   

19.
Despite L-glutamine being the most abundant amino acid in CSF, the mechanisms of its transport at the choroid plexus have not been fully elucidated. This study examines the role of L-, A-, ASC-, and N-system amino acid transporters in L-[14C]glutamine uptake into isolated rat choroid plexus. In the absence of competing amino acids, approximately half the glutamine uptake was via a Na(+)-dependent mechanism. The Na(+)-independent uptake was inhibited by 2-amino-2-norbornane carboxylic acid, indicating that it is probably via an L-system transporter. Na(+)-dependent uptake was inhibited neither by the A-system substrate alpha-(methylamino)isobutyric acid nor by the ASC-system substrate cysteine. It was inhibited by histidine, asparagine, and L-glutamate gamma-hydroxamate, three N-system substrates. Replacement of Na+ with Li+ had little effect on uptake, another feature of N-system amino acid transport. These data therefore indicate that N-system amino acid transport is present at the choroid plexus. The Vmax and Km for glutamine transport by this system were 8.1 +/- 0.3 nmol/mg/min and 3.3 +/- 0.4 mM, respectively. This system may play an important role in the control of CSF glutamine, particularly when the CSF glutamine level is elevated as in hepatic encephalopathy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号