首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Ginger rhizome (Zingiber officinale Roscoe) contains ginger proteases and has proteolytic activity. Ginger proteases have been used for tenderizing meat but rarely for milk clotting. The purpose of this study was to purify ginger proteases and to research their biochemical characteristics. RESULTS: The milk clotting activity (MCA) and proteolytic activity (PA) of the proteases was stable after storage at 4 °C for 24 h. The MCA and PA of fresh ginger juice with 0.2% L ‐ascorbic acid remained stable for 6 days at 4 °C. When under storage at ?80 °C for 2 months, the MCA and PA of the fresh ginger juice and acetone precipitate were still high. Two peaks with protease activity were purified from a DEAE FF ion‐exchange column; the specific activity (units mg?1 protein) of the MCA (MCSA) and PA (PSA) for the first peak was significantly higher than the second peak (P < 0.05). The protease activity of the ginger proteases was significantly inhibited by E‐64, leupeptin, and iodoacetic acid. Zymography results showed that two protease fractions purified from ginger juice with 62 and 82 kDa had a higher PA against α‐ and β‐casein than against κ‐casein. CONCLUSION: The ascorbic acid addition significantly stabilized the MCA and PA of ginger proteases. The protease inhibition test suggested that ginger proteases belonged to the cysteine type. The biochemical characteristics of ginger protease described in this paper can provide useful information for making new milk curd products. Copyright © 2009 Society of Chemical Industry  相似文献   

2.
Exopolysaccharide (EPS) production by Lactobacillus delbrueckii subsp. bulgaricus SZ2 was optimised in modified MRS (M‐MRS) using the response surface methodology (RSM). Maximum EPS production was 74.3 ± 2 mg/L, and the optimised values of the three variables predicted for maximum EPS production included a temperature of 38.7 °C, Bacto‐casitone and glucose concentrations of 24.5 and 29.6 g/L, respectively. To compare EPS production in MRS and skimmed milk (SM), the kinetics of EPS formation and growth were monitored in M‐MRS, SM, skimmed milk plus 2% additional sucrose (Suc‐SM) and skimmed milk containing Bacto‐casitone (20 g/L) and yeast nitrogen base (5 g/L) (BY‐SM). EPS production in all the media tested seemed to be growth‐related. The EPS/cell ratios were determined to be 3.12 × 10?10, 1.43 × 10?10, 4.42 × 10?11 and 3.16 × 10?11 mg/cell, in Suc‐SM, SM, M‐MRS and BY‐SM, respectively, clearly indicating the greater effect of C/N ratio when cell behaviour in EPS production is considered.  相似文献   

3.
A protease from sorghum malt variety KSV8–11 was purified by a combination of dialysis against 4 M sucrose, ion‐exchange chromatography on Q‐Sepharose (Fast flow), gel filtration chromatography on Sephadex G‐100 and hydrophobic interaction chromatography on Phenyl Sepharose CL‐4B. The enzyme was purified 5‐fold to give a 14.1% yield relative to the total activity in the crude extract and a final specific activity of 1348.9 U mg?1 protein. SDS‐PAGE revealed a single migrating protein band corresponding to a relative molecular mass of 16 KDa. Using casein as substrate, the purified protease had optimal activity at 50°C and maximal temperature stability between 30°C and 40°C but retained over 64% of its original activity after incubation at 60°C for 30 min. The pH optimum was 5.0 with maximum stability at pH 6.0 but 60% of the activity remained after 24 h between pH 5.0 and 8.0. The protease was inhibited by Ag+, Ca2+, Co2+, Fe2+, Mg2+, iodoacetic acid (IAA) and p‐chloromercuribenzoate (p‐CMB), stimulated by Cu2+, Sr2+, phenylmethylsulfonyl‐fluoride (PMSF) and 2‐mercaptoethanol (2‐ME) while Mn2+ and ethylenediaminetetraacetic acid (EDTA) had no effect. The purified enzyme had a Km of 18 mg·mL?1 and a Vmax of 11.1 μmol · mL?1 · min?1 with casein as substrate.  相似文献   

4.
A novel salt-tolerant acid protease was produced from Aspergillus oryzae LK-101 (AOLK-101). The AOLK-101 protease was purified to homogeneity by ammonium sulfate precipitation, DEAE-Sephadex A-50 and Sephadex G-100 chromatographies in order. The specific activity and the purification ratio of the purified protease were 2,301 unit/mg and 11.6 fold, respectively, with 25 kDa of molecular weight on sodium dodecyl sulfate-polyacrylamide gel electrpphoresis (SDS-PAGE). Its optimal pH and temperature were pH 6.5 and 50°C, respectively. This protease was relatively stable at pH 4.5–7.5, below 40°C, and up to 10% salt concentration. The protease was moderately inhibited by Ag2+ and Zn2+, and strongly by ethylenediamide tetraacetic acid (EDTA) and phenylmethysulfonyl fluoride (PMSF), but activated by Cu2+ and Mn2+. Therefore, the AOLK-101 protease was a serine protease based on the influence of metal ions and inhibitors. K m , V max , k cat , and k cat /K m values of AOLK-101 protease for hammastein milk casein were 1.04 mg/mL, 124.84 unit/L, 163.5/sec, and 3.9×106/m·sec, respectively.  相似文献   

5.
A halotolerant alkaline serine protease from Penicillium citrinum YL-1 which was isolated from traditional Chinese fish sauce was purified by ammonium sulfate precipitation, dialysis, and DEAE 52-Cellulose column, thereby resulting in a 4.66-fold increase in specific activity (110.68 U/mg). The molecular weight (MW) was estimated to be 32.27 kDa using SDS-PAGE analysis. The protease exhibited optimal activity toward the substrate casein at pH 8.0 at 40°C and was stable at pH 6.0–8.0 and 4–30°C. Activity was inhibited by NaCl and retained at 28.3, 21.4 and 18.1% of the initial activity after incubation for 6 h at 20, 25 and 30% NaCl concentrations, respectively. The enzyme was stimulated by Mn2+ and inhibited by K+, Ca2+, Zn2+, Mg2+, Fe2+, and Fe3+. Km and Vmax of the protease for casein were 1.93 mg/ml and 56.81 μg/(min·ml), respectively. Protease activity was strongly inhibited by phenylmethyl sulfonylfluoride (PMSF), which confirmed the serine protease nature of the enzyme. The protease can hydrolyze tilapia protein in the absence or presence of NaCl (5–30%), thus suggesting that this protease is more halotolerant than the protease from other bacteria with high salinity resistance based on the current literature. These properties make the halotolerant alkaline serine protease a suitable candidate enzyme for fish protein hydrolysis during fish sauce fermentation.  相似文献   

6.
Bacillus cereus is one of the most important spoilage microorganisms in milk. The heat-resistant protease produced is the main factor that causes rotten, bitter off-flavors and age gelation during the shelf-life of milk. In this study, 55 strains of B. cereus were evaluated, of which 25 strains with protease production ability were used to investigate proteolytic activity and protease heat resistance. The results showed that B. cereus C58 had strong protease activity, and its protease also had the highest thermal stability after heat treatment of 70°C (30 min) and 100°C (10 min). The protease was identified as protease HhoA, with a molecular mass of 43.907 kDa. The protease activity of B. cereus C58 in UHT-sterilized whole milk (UHT milk) showed an increase with the growth of bacteria, especially during the logarithmic growth phase. In addition, the UHT milk incubated with protease from B. cereus C58 at 28°C (24 h) and 10°C (6 d) were used to evaluate the effects of protease on the quality of UHT milk, including protein hydrolysis and physical stability. The results showed that the hydrolysis of casein was κ-CN, β-CN, and αS-CN successively, whereas whey protein was not hydrolyzed. The degree of protein hydrolysis, viscosity, and particle size of the UHT milk increased. The changes in protein and fat contents indicated that fat globules floated at 28°C and settled at 10°C, respectively. Meanwhile, confocal laser scanning microscopy images revealed that the protease caused the stability of UHT milk to decrease, thus forming age gelation.  相似文献   

7.
BACKGROUND: Proteases have become an essential part of the modern food and feed industry, being incorporated in a large and diversified range of products for human and animal consumption. The objective of this study was to purify and characterise a protease from wheat germ. RESULTS: After purification a single protease of molecular weight 61–63 kDa (determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis) was obtained. The purified protease had optimal activity at 50 °C and maintained its activity completely after incubation at 30 °C for 30 min, while over 47% of the activity was lost after incubation at 80 °C for 30 min. The purified protease had optimal activity and maintained maximum stability at pH 5.5, while the activity decreased after incubation for 30 min at other pH values. The protease was inhibited by Mg2+, Mn2+, Ba2+ and iodacetic acid and stimulated by Li+, Ca2+, Cu2+, β‐mercaptoethanol and dithiothreitol, while Zn2+, L ‐cysteine and glutathione had no significant effect on its activity. At pH 5.5 the enzyme had a Km of 0.562 mg mL?1 with casein as substrate and showed higher affinity to casein than to bovine serum albumin, ovalbumin and gelatin. CONCLUSION: The purified enzyme from wheat germ was identified as a cysteine protease. Copyright © 2011 Society of Chemical Industry  相似文献   

8.
BACKGROUND: Angiotensin I‐converting enzyme (ACE) is a dipeptidyl carboxypeptidase associated with the regulation of blood pressure. ACE inhibition results in a lowering of blood pressure. Lactic acid bacteria are known to produce ACE inhibitors during fermentation. Fermented camel milk is the main traditionally fermented dairy food for desert nomads. The beneficial effects of fermented camel milk, which include the prevention of such diseases and conditions as gastroenteritis, tuberculosis and hypertension, have been demonstrated experimentally. RESULTS: ACE inhibitory activity was observed in fermented milk containing Lactobacillus helveticus 130B4, a strain isolated from traditionally fermented camel milk. The peptide that inhibited ACE was purified from the fermented milk by reverse‐phase high‐performance liquid chromatography. The amino acid sequence of the peptide was identified as Ala‐Ile‐Pro‐Pro‐Lys‐Lys‐Asn‐Gln‐Asp (IC50 = 19.9 µmol L?1). The same Ala‐Ile‐Pro‐Pro‐Lys‐Lys‐Asn‐Gln‐Asp sequence was found in κ‐casein (κ‐CN) f107–115 from milk. The inhibitory activity of this nonapeptide (κ‐CN f107–115) was almost preserved even after successive digestion with pepsin, trypsin and chymotrypsin. Furthermore, the inhibitory activity of the purified peptide was completely preserved after heat treatment at 100 °C for 20 min. CONCLUSION: The fermented milk prepared with Lactobacillus helveticus 130B4 contained an ACE inhibitory peptide, κ‐CN 107–115. This fermented milk was expected to have anti‐hypertensive effect after ingestion because the peptide was stable to digestive protease and heat treatment in vitro. Copyright © 2008 Society of Chemical Industry  相似文献   

9.
The objective of the study was to develop vetch–bovine milk (VBM) pizza cheese low in animal fat and its acceptability was determined through physico‐chemical, functional and sensory evaluations. Vetch (Lathyrus sativus) was detoxified by steeping in double its quantity of water for 8 h at 70 °C, changing the water seven times, draining and sun drying. Dried vetch was then treated with water at pH 4.0 at 90 °C for 60 min to deplete the beany flavour, then dried and milled into fine flour with Quadrumate Senior mill. The seed coat was separated as one of the mill fractions. Four types of VBM blends were prepared from vetch flour and bovine skimmed milk powder and were used to prepare cheese using 2.5% lactic acid bacterial culture of Streptococcus thermophillus and Streptococcus bulgaricus and rennet (0.15 mL L?1, 1:40 ratio with water). The cheese was stored at 4 °C for 14 days and used as topping over the pizza shell. Physico‐chemical analyses, such as moisture, total solids, lactose, ash, fat, titratable acidity and pH, and sensory evaluations of both cheese and pizza were carried out at 0‐, 7‐ and 14‐day intervals. The stretchability and meltability of cheese increased significantly (P < 0.05) during storage. Commercial Mozzarella cheese was taken as a control. The results of this study suggested that VBM blend at the ratio of 12.5:87.5 (vetch flour:bovine milk powder) could be utilised to prepare a cheese of desirable characteristics for pizza topping.  相似文献   

10.
The effects of proportion of concentrate in the ruminant diet and the effects of freezing ruminal content prior to assay on proteolytic activity in ruminal inoculum were evaluated using three analytical techniques. A novel approach for determining proteolytic activity (PA) of ruminal fluid utilising 15N‐labelled casein was compared with two published procedures. In a crossover experiment, four heifers were fed two isonitrogenous diets containing (dry matter basis) 50% barley silage, 45% rolled barley grain and 4% soybean meal (medium‐grain diet, MG) or 8% barley silage, 89% rolled barley grain and 2% soybean meal (high‐grain diet, HG). Ruminal fluid was analysed either fresh or after having been frozen at ?40 °C for 45 days. Substrates utilised in measuring PA included 15N‐labelled casein (produced by infusing (15NH)2SO4 into the rumen of a lactating dairy cow), 14C‐labelled casein and azocasein. Incubations were conducted in 0.2 M phosphate buffer (pH 6.8) for 20 min at 39 °C. In the 15N‐casein incubations, PA was estimated as (i) N soluble in 5% trichloroacetic acid (TCASN), (ii) N soluble in 5% TCA corrected for microbial N uptake (TCAMICR) and (iii) N depleted from the soluble protein N pool (SPR). In the 14C‐casein incubations, PA was measured as TCA‐soluble radioactivity; in the azocasein method it was measured as dye released during incubation. Across treatments the highest (P < 0.001) proteolytic activity was measured by the SPR method, followed by TCAMICR, TCASN and 14C‐casein. The lowest activity was recorded using the azocasein method. Within the 15N‐ and 14C‐casein methods, PA in previously frozen ruminal fluid was higher (P < 0.05) with the HG diet than with the MG diet, and higher (P < 0.05) in previously frozen fluid than in inoculum processed fresh. This study demonstrates that increasing the proportion of grain in the diets of cattle and freezing the ruminal inoculum both increase proteolytic activity measured in ruminal fluid. The proposed 15N‐casein method yielded higher proteolytic activity values than the 14C‐casein method. Copyright © 2002 Society of Chemical Industry. Contributions of A N Hristov, T A McAllister and Z Xu. © Minister of Public Works and Government Services, Canada 2002.  相似文献   

11.
The influence of transglutaminase (TGase) on the Maillard reaction was investigated in skimmed milk samples during heat treatment. TGase‐treated and control samples were heated at 80, 120 and 140 °C for 1, 5, 15, 30, 40 and 60 min. Compared with the TGase‐treated samples heated at 80 and 120 °C, the sample heated at 140 °C showed a larger decrease in furosine concentration. It was also found that TGase did not affect the formation of hydroxymethylfurfural and lactulose at 120 °C, whereas their concentrations increased in the presence of TGase at 140 °C. It was concluded that blockage of lysine residues via enzymatic cross‐linking of milk proteins had a limited effect on the Maillard reaction.  相似文献   

12.
A high‐inulinase‐producing strain of Aspergillus candidus (10 units cm−3 of medium) for producing fructose from inulin has been identified. The extracellular inulinase from this fungi was purified 56‐fold by ammonium sulphate fractionation, DEAE cellulose and Sephadex G‐150 column chromatography. Invertase to inulinase ratio of 1.8 in culture filtrate was reduced to 0.14 in the purified preparation. The pH and temperature optima were 5.5 and 45°C, respectively. The molecular weight of inulinase was determined as 54±4 kDa. Km of inulinase with inulin as a substrate was 3.8 mmole dm −3. The purified preparation produced only fructose as the product of inulin, indicating that inulinase has primarily exo‐inulinase activity. Inulinase was immobilised on chitin and casein using glutaraldehyde as a linking agent and on cellulose using FeCl3‐HCl as a metal chelation agent. Maximum immobilisation of 45.8% was achieved on cellulose. All three immobilised preparations had a higher temperature optima of 55°C. The inulinases immobilised on cellulose and casein were stable at pH 5–7. The cellulose‐immobilised preparation was more stable than the other two preparations after heating for 1 h at 55°C. © 1999 Society of Chemical Industry  相似文献   

13.
The interactions between the flavan‐3‐ol (?)‐epigallocatechin‐3‐gallate (EGCG) and bovine β‐casein in phosphate‐buffered saline (PBS) of pH 6.5 subjected to thermal processing at various temperatures (25–100 °C) were investigated using fluorescence quenching. The results indicated that different temperatures had different effects on the structural changes and EGCG‐binding ability of β‐casein. At temperatures below 60 °C, the β‐casein–EGCG interaction changed little (> 0.05) with increasing temperature. At temperatures above 80 °C, native assemblies of β‐casein in solution dissociated into individual β‐casein molecules and unfolded, as demonstrated by a red shift of the maximum fluorescence emission wavelength (λmax) of up to 8.8 nm. The highest quenching constant (Kq) and the number of binding sites (n) were 0.92 (±0.01) × 1013 m ?1 s?1 and 0.73 (±0.02) (100 °C), respectively. These results provide insight into the potential of interactions between β‐casein–EGCG that may modulate bioactivity or bioavailability to be altered during thermal process.  相似文献   

14.
An aminopeptidase (AP) was partially purified from jumbo squid (Dosidicus gigas) hepatopancreas with 154.24‐fold and yield of 6.15%. The purification procedure consisted of ammonium sulphate fractionation and DEAE‐Sephacel chromatography. The enzyme was approximately 48–53 kDa as estimated by SDS‐PAGE. With l ‐leu‐p‐NA, it had optimum activity at pH 8.0 and 30 °C. The Km and Vmax/Km values of the enzymes for l ‐leu‐p‐NA were 0.326 mm and 2787 at 37 °C, respectively. Activation energy (Ea) of the enzyme was 53.50 kJ M?1.The AP showed activity against seven synthetic substrates: l ‐proline>l ‐methionine>Ac. l ‐γ‐glutamic>l ‐glycine>l ‐leucine>l ‐alanine>l ‐lysine‐p‐NA. The enzyme was strongly inhibited by Bestatin, partially inhibited by a metal‐chelating agent and by PCMB, a cystein protease inhibitor. Zn2+ and (or) Ca2+ seemed to be its metal cofactor(s). Incubation of casein with the partially purified AP resulted in a degree of hydrolysis of 6%.  相似文献   

15.
There is a market demand for nonfat fermented goats’ milk products. A nonfat goats’ milk yogurt containing probiotics (Lactobacillus acidophilus, and Bifidobacterium spp.) was developed using heat‐treated whey protein concentrate (HWPC) as a fat replacer and pectin as a thickening agent. Yogurts containing untreated whey protein concentrate (WPC) and pectin, and the one with only pectin were also prepared. Skim cows’ milk yogurt with pectin was also made as a control. The yogurts were analyzed for chemical composition, water holding capacity (syneresis), microstructure, changes in pH and viscosity, mold, yeast and coliform counts, and probiotic survivability during storage at 4 °C for 10 wk. The results showed that the nonfat goats’ milk yogurt made with 1.2% HWPC (WPC solution heated at 85 °C for 30 min at pH 8.5) and 0.35% pectin had significantly higher viscosity (P < 0.01) than any of the other yogurts and lower syneresis than the goats’ yogurt with only pectin (P < 0.01). Viscosity and pH of all the yogurt samples did not change much throughout storage. Bifidobacterium spp. remained stable and was above 106CFU g‐1 during the 10‐wk storage. However, the population of Lactobacillus acidophilus dropped to below 106CFU g‐1 after 2 wk of storage. Microstructure analysis of the nonfat goats’ milk yogurt by scanning electron microscopy revealed that HWPC interacted with casein micelles to form a relatively compact network in the yogurt gel. The results indicated that HWPC could be used as a fat replacer for improving the consistency of nonfat goats’ milk yogurt and other similar products.  相似文献   

16.
Proteolytic degradation and distribution of caseins and whey proteins between the soluble and colloidal phases were studied in six batches of commercial UHT milk (three skim and three whole milks) during storage at 25 ± 2 °C. For that purpose, at 30 day intervals, milk samples were ultracentrifuged and the pellets and supernatants analysed by capillary electrophoresis and SDS‐PAGE. Samples were also visually examined for signs of gelation. Extensive proteolytic degradation of the micellar fractions and severe changes in the electrophoretic pattern of the proteins present in the serum fractions were observed in all the batches. A higher proportion of denatured whey proteins not attached to the micelle surface was found in the skim milk samples as compared with the whole milk samples that could provide less resistance against gelation. In addition to β‐Lg, para‐κ‐casein was also found in the serum fraction. A high proteolytic activity against κ‐casein could be responsible for the hydrolysis of serum‐liberated κ‐casein or could have enhanced the liberation of β‐Lg–para‐κ‐casein complexes through proteolysis of micellar κ‐casein. © 1999 Society of Chemical Industry  相似文献   

17.
Abstract

This work evaluated the ability of strains representing six species of Bifidobacterium with probiotic potential to survive and maintain β‐galactosidase activity through a two‐step, low‐temperature storage period. Cultures were also evaluated for their ability to ferment skim milk and retain viability during storage at 4°C. Bifidobacterium longum ATCC 15707, B. breve 15700, and B. bifidum 29521 maintained the greatest viabilities at > 1 x 107 CFU/mL, and B. infantis 15702 maintained the highest β‐galactosidase activity at > 1 U/ml (with < 1 × 105 CFU/mL) after ‐60 to 4°C storage. In fermented skim milk, B. breve 15700, B. bifidum 29521, and B. animalis 25527 tolerated a final product pH of 4.75 with > 1 × 108 CFU/mL remaining after 14 days of storage at 4°C. Overall, it was found that highest levels of β‐galactosidase activities did not necessarily correlate to the highest plate‐count populations.  相似文献   

18.
A single mutation, Asp238→Asn (D238N), of Aspergillus awamori glucoamylase (GA) was identified that increases extracellular production of the enzyme in Saccharomyces cerevisiae at 37 °C. The mutant was isolated as a suppressor of Gly396→Ser (G396S), a previously isolated temperature‐sensitive mutation that decreases the thermostability and extracellular production of GA expressed in S. cerevisiae. Culture supernatants of the double mutant G396S/D238N contained much more GA than supernatants of G396S at 33.5 and 37 °C but not at 30 °C. Additionally, culture supernatants of the D238N contained 1.5 to 2‐fold more GA than supernatants of wild‐type when grown at 37 °C but not at 30 or 33.5 °C. The D238N mutation creates a consensus N‐glycosylation site in GA. Mass spectrometry showed that the molecular weight of D238N was 2319 Da greater than that of the wild‐type GA and that of D238N/G396S was 3094 Da greater than that of G396S, suggesting the presence of an additional N‐linked glycan at residue 238. No difference in thermostability or activity was observed between the G396S and G396S/D238N mutants or between wild‐type and D238N GAs, and D238N did not affect intracellular GA levels at 30 or 37 °C.  相似文献   

19.
The production and activities of extracellular acid proteases of Aspergillus fumigatus Fres and Aspergillus nidulans (Eidam) Wint were studied. Both species grew readily on the palm kernel oil-peptone medium resulting in peak protease production and biomass accumulation occurring within the incubation period of 10 dys. Partial purification of the crude protease from the culture filtrate of A. fumigatus on DEAE-cellulose and on Sephadex G-200 gave a single active protease peak being eluted with thF protein front at A280-A 47-fold purification was achieved with a recovery value of 2.1 %. The specific activity (22.4 U/mg protein) of A. fumigatus protease was much higher than that of A. nidulans protease (11.4 U/mg protein). Also, A. fumigatus protease was most active at 40 °C and pH 5.8 on casein and on gelatin. A. nidulans protease acted best at 45 °C and pH 5.4 on similar substrate. The proteases from both fungi showed no exoprotease activity when used to hydrolyze leucine amide, hippuryl phenylalanine and hippuryl arginine.  相似文献   

20.
Raw milk was flushed with 100 ml N2 min -1 during storage at 4°C. Microflora (total psychrotrophs, proteolytic psychrotrophs, lactic acid bacteria) in nitrogen-flushed milk exhibited a longer lag phase and slower growth rates than those in milk stored aerobically at 4°C. Although proteolytic psychrotrophs grew in nitrogen-flushed milk, proteinases could not be detected in these milk samples. Proteinase assays and electrophoresis showed extensive proteolytic activity and hydrolysis of β-casein in control milk but no detectable casein degradation in nitrogen-flushed milk, even after storage for 18 days at 4°C. This study shows the potential of controlled atmosphere storage of raw milk for inhibition of the accumulation of proteolytic enzymes from psychrotrophic bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号