首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The antioxidant properties of selected amino acids were tested using in vitro assays and oil‐in‐water (O/W) emulsions under riboflavin (RF) photosensitization. Headspace oxygen content, lipid hydroperoxides, and conjugated dienes were determined for the degree of oxidation. Riboflavin photosensitization was adapted as the oxidation driving force. In vitro assays showed that cysteine had the highest antioxidant properties followed by tryptophan and tyrosine. However, in O/W emulsions under RF photosensitization, tyrosine inhibited lipid oxidation whereas tryptophan acted as a prooxidant. Tryptophan accelerated the rates of oxidation in O/W emulsion without RF. The antioxidant properties of amino acids differed depending on the antioxidant determination methods, oxidation driving forces, and food matrices.  相似文献   

2.
Flavonoids have attracted attention due to pharmacological and antioxidative activities. The effects of flavonoids on the physical and oxidative stabilities of lecithin emulsified soybean oil-in-water (O/W) emulsions were investigated at 25°C during 29 days of storage. Addition of 100 ppm hesperidin, hesperitin, rutin, or quercetin improved the physical stability of O/W emulsions but did not change particle size values, compared to a control with no flavonoids during storage. Quercetin showed the highest antioxidant activity for inhibition of lipid oxidation based on lowered lipid hydroperoxide formation and 2-thiobarbituric acid reactive substances values in emulsions, followed by rutin, hesperitin, and hesperidin. Hesperidin and hesperitin did not affect antioxidative activities in O/W emulsions under metal ion-catalyzed conditions. Addition of hesperidin, hesperitin, rutin, and quercetin to soybean oil O/W emulsions improved the physical and oxidative stability of emulsions lacking added metal ions.  相似文献   

3.
α-Tocopherol is known to show different activity depending on the concentration and food matrix. Effects of α-tocopherol at the concentrations of 0, 0.1, 0.5, and 1.0 mM were determined in oil-in-water (O/W) emulsions containing anionic, neutral, and cationic emulsifiers under different types of oxidative stress including riboflavin photosensitization, photooxidation, and autoxidation. Headspace oxygen depletion, lipid hydroperoxides, and conjugated dienes were analyzed to determine the oxidative stability of O/W emulsions. α-Tocopherol served as an antioxidant in O/W emulsion with a cationic emulsifier irrespective of oxidative stress. α-Tocopherol acted as an antioxidant in O/W emulsion with a neutral emulsifier at riboflavin photosensitization while a prooxidant at photooxidation. However, in samples with an anionic emulsifier, α-tocopherol activity differed from the concentration and types of oxidative stress. Therefore, cationic transition metals or reactive oxygen species generated from RF photosensitization could play key roles of α-tocopherol in O/W emulsion.  相似文献   

4.
Antioxidant properties of the aqueous extracts of hulled barley (Hordeum vulgare L.) that had been roasted at 210 °C for 20 min were determined in bulk oil and oil‐in‐water (O/W) emulsions. Bulk oils were heated at 60, 100, and 180 °C, and O/W emulsions were oxidized under riboflavin photosensitization. The content of phenolic compounds was analyzed by high‐performance liquid chromatography, and in vitro antioxidant assays were also conducted. The major phenolics contained in the aqueous extract of roasted hulled barley (AERB) were p‐coumaric, ferulic, protocatechuic, chlorogenic, 4‐hydroxybenzoic, and vanillic acids. Depending on the concentration and oxidation temperature, AERB had antioxidant or prooxidant properties in bulk oil. At 60 °C, AERB at a concentration of 0.5% acted as a prooxidant, whereas at 1.0% it acted as an antioxidant. At 100 °C, AERB acted as an antioxidant irrespective of concentration. In 180 °C conditions, 0.5% AERB acted as a prooxidant, whereas other concentrations of AERB acted as antioxidants. In the case of riboflavin photosensitized O/W emulsions, AERB showed antioxidant properties irrespective of concentration. Antioxidant abilities of AERB are affected by the food matrix, including bulk oil and O/W emulsions, and concentrations of AERB, even though diverse phenolic compounds may display high antioxidant properties in in vitro assays.  相似文献   

5.
The oxidative stability in oil-in-water (O/W) emulsions containing different emulsifier charges was tested under riboflavin photosensitization by analysis of headspace oxygen content and lipid hydroperoxides. Sodium dodecyl sulfate (SDS), Tween 20, and cetyltrimethylammonium bromide (CTAB) were selected as anionic, neutral, and cationic emulsifiers, respectively. The O/W emulsions containing CTAB had lower oxidative stability than those with SDS and Tween 20. The addition of ethylenediaminetetraacetic acid, a well-known metal chelator, increased the oxidative stability in O/W emulsions, irrespective of emulsifier charges. Oxidative stability in Tween 20-stabilized emulsions decreased in FeCl3 and FeCl2 concentration-dependent manner. However, oxidative stability in samples containing CTAB increased up to 0.5mM of FeCl3 and FeCl2 and then decreased, which implies that CTAB act differently during lipid oxidation compared to SDS and Tween 20.  相似文献   

6.
Antioxidative or prooxidative properties of α-tocopherol, Trolox, ascorbic acid, and ascorbyl-palmitate at the concentration of 0.1 and 1.0 mM were determined in oil-in-water (O/W) emulsions under chlorophyll photosensitization. Headspace oxygen depletion, lipid hydroperoxides, and headspace volatile analyses were conducted to determine the oxidative stability of O/W emulsions. For 32 h visible light irradiation, depleted headspace oxygen content in O/W emulsions were in the order of samples containing Trolox, ascorbic acid, ascorbyl palmitate, α-tocopherol, without antioxidants under light, and samples in the dark, which implies that all the added compounds acted prooxidant. These prooxidative properties of added compounds can be observed in the results of lipid hydroperoxides and headspace volatiles. Samples containing ascorbic acid and ascorbyl palmitate retained higher chlorophyll content than those containing Trolox up to 16 h. Increases of concentration of Trolox, ascorbic acid, and ascorbyl palmitate from 0.1 to 1.0 mM increased the lipid oxidation products whereas α-tocopherol decreased the degree of lipid oxidation implying α-tocopherol may not share the same prooxidant mechanisms compared to other compounds in chlorophyll sensitized O/W emulsions.  相似文献   

7.
Nutritional deficiencies of ergocalciferol (VD2) and cholecalciferol (VD3) cause skeletal deformations. The primary aim of this study was to encapsulate VD2 and VD3 in food‐grade oil‐in‐water (O/W) emulsions by using microchannel emulsification (MCE). Silicon asymmetric straight‐through microchannel (MC) array consisting of 10 313 channels, each having an 11 × 104 μm microslot connected to a 10 μm circular microholes. 1% (w/w) sodium cholate or Tween 20 in water was used as the continuous phase, while 0.5% (w/w) of each VD2 and VD3 in different oils served as the dispersed phase. Monodisperse O/W emulsions with Sauter mean diameters of 28 to 32 μm and relative span factor widths below 0.3 were formulated via an asymmetric straight‐through MC array under appropriate operating conditions. The monodisperse O/W emulsions stabilised with Tween 20 remained stable for >30 days with encapsulation efficiencies (EEs) of VD2 and VD3 of above 70% at 4 and 25 °C. In contrast, those stabilised with sodium cholate had stability of >30 days with their EEs of over 70% only at 25 °C.  相似文献   

8.
Abstract: This study examined the effectiveness of fat and water soluble antioxidants on the oxidative stability of omega (ω)‐3 rich table spreads, produced using novel multiple emulsion technology. Table spreads were produced by dispersing an oil‐in‐water (O/W) emulsion (500 g/kg 85 camelina/15 fish oil blend) in a hardstock/rapeseed oil blend, using sodium caseinate and polyglycerol polyricinoleate as emulsifiers. The O/W and oil‐in‐water‐in‐oil (O/W/O) emulsions contained either a water soluble antioxidant (green tea extract [GTE]), an oil soluble antioxidant (α‐Tocopherol), or both. Spreads containing α‐Tocopherol had the highest lipid hydroperoxide values, whereas spreads containing GTE had the lowest (P < 0.05), during storage at 5 °C, while p‐Anisidine values did not differ significantly. Particle size was generally unaffected by antioxidant type (P < 0.05). Double emulsion (O/W/O) structures were clearly seen in confocal images of the spreads. By the end of storage, none of the spreads had significantly different G′ values. Firmness (Newtons) of all spreads generally increased during storage (P < 0.05). Practical Application: Lipid oxidation is a major problem in omega‐3 rich oils, and can cause off‐odors and off‐flavors. Double emulsion technology was used to produce omega‐3 enriched spreads (O/W/O emulsions), wherein the omega‐3 oil was incorporated into the inner oil phase, to protect it from lipid oxidation. Antioxidants were added to further protect the spreads by reducing lipid oxidation. Spreads produced had good oxidative stability and possessed functional (omega‐3 addition) properties.  相似文献   

9.
Effects of riboflavin photosensitization on the degradation of bisphenol A (BPA) were determined in oil-in-water (O/W) emulsions containing ethylenediaminetetraacetic acid (EDTA) or sodium azide, which are a metal chelator or a singlet oxygen quencher, respectively. Also, the distribution of BPA between the continuous and dispersed phases in O/W emulsions was analyzed by high-performance liquid chromatography (HPLC). The concentration of BPA in O/W emulsions significantly decreased by 38.6% after 2 h under visible light irradiation and in the presence of riboflavin (P < 0.05). Addition of EDTA and sodium azide protected the decomposition of BPA significantly in a concentration dependent manner (P < 0.05), which implies both transition metals and singlet oxygen accelerate the photodegradation of BPA in O/W emulsions. Approximately 21.7% of the BPA was distributed in the 2.5% (w/v) dispersed lipid particles and 78.3% was in the continuous aqueous phase of the emulsions. The amount of BPA in aqueous phase decreased faster than the amount of BPA in the lipid phase during riboflavin photosensitization (P < 0.05). Thus, the BPA in the aqueous phase was the major target of riboflavin photodegradation in O/W emulsions. Practical Application: Concentration of BPA, an endocrine disrupting chemical, was decreased significantly in oil-in-water emulsions under riboflavin and visible light irradiation. BPA in continuous aqueous phase was major target of riboflavin photosensitization. However, BPA was distributed more densely in lipid phase and more protected from riboflavin photosensitized O/W emulsions. This study can help to decrease the level of BPA in foods made of O/W emulsions containing riboflavin, which could be displayed under visible light irradiation.  相似文献   

10.
In this work, formulation and characterization of oil-in-water (O/W) emulsions loaded with rutin were successfully overhead. We investigated the effect of homogenization pressure on the mean droplet size, droplet size distribution, physical stability, and rutin retention of these emulsions. O/W emulsions with a mean droplet size (d 3,2) of about 150 nm and a span of nearly the unit were formulated by microfluidization at the homogenization pressure 20–150 MPa. The O/W emulsion droplets loaded with rutin were physically stable in terms of variations of d 3,2 and span during 30 days of storage in the dark condition at 4 and 25 °C. The creaming velocity was characterized using centrifugal method showing a relative good shelf life. HPLC analysis demonstrated that 71–85% of initial rutin was retained in the fresh O/W emulsions and declined to 22–35% (w/w) for 30-day storage at 25 °C. Antioxidant activity assays confirmed that rutin-loaded emulsion participated in the antioxidant activity after encapsulation similarly to pure rutin. These results indicate that O/W emulsion systems can function as potential delivery systems to enhance bioavailability to encapsulate liposoluble antioxidant rutin for potential applications in the food industry.  相似文献   

11.
Heteroaggregated oil‐in‐water (O/W) emulsions formed by targeted combination of oppositely charged emulsion droplets were proposed to be used for the modulation of physical properties of food systems, ideally achieving the formation of a particulate 3‐dimensional network at comparably low‐fat content. In this study, rheological properties of Quillaja saponins (QS), sugar beet pectin (SBP), and whey protein isolate (WPI) stabilized conventional and heteroaggregated O/W emulsions at oil contents of 10% to 60% (w/w) were investigated. Selected systems having an oil content of 30% (w/w) and different particle sizes (d43 ≤ 1.1 or ≥16.7 μm) were additionally subjected to chemical (genipin or glutaraldehyde) and thermal treatments, aiming to increase network stability. Subsequently, their rheological properties and stability were assessed. Yield stresses (τ0) of both conventional and heteroaggregated O/W emulsions were found to depend on emulsifier type, oil content, and initial droplet size. For conventional emulsions, high yield stresses were only observed for SBP‐based emulsions (τ0,SBP approximately 157 Pa). Highest yield stresses of heteroaggregates were observed when using small droplets stabilized by SBP/WPI (approximately 15.4 Pa), being higher than those of QS/WPI (approximately 1.6 Pa). Subsequent treatments led to significant alterations in rheological properties for SBP/WPI systems, with yield stresses increasing 29‐fold (glutaraldehyde) and 2‐fold (thermal treatment) compared to untreated heteroaggregates, thereby surpassing yield stresses of similarly treated conventional SBP emulsions. Genipin‐driven treatments proved to be ineffective. Results should be of interest to food manufacturers wishing to design viscoelastic food emulsion based systems at lower oil droplet contents.  相似文献   

12.
The ability of three related naturally occurring flavonols in inhibiting Hb oxidation and lipid peroxidation of human erythrocyte membranes was evaluated. The flavonols tested exhibited the following order of potency to inhibit tert‐butyl hydroperoxide‐induced Hb oxidation: quercetin > rutin > morin. The Hb oxidation was estimated by the extent of metHb and hemichrome formation induced by tert‐butyl hydroperoxide. Quercetin or rutin (0.5 mM) increased oxyHb levels about 33% and 10%, respectively. Morin (0.5 mM) was pro‐oxidant, decreasing the oxyHb about 7%. Despite the pro‐oxidant action on Hb oxidation, morin offered greater protection against lipid peroxidation than rutin, preventing the formation of TBA reactive substances by 33.1%, at 0.2 mM. However, quercetin (0.2 mM) provided approximately 50% protection against TBARS formation. The results show that the flavonoids tested are protective for Hb oxidation and lipid peroxidation on erythrocyte membrane subjected to oxidative stress. Quercetin in particular, may be useful in diminishing oxidative damage to red blood cells  相似文献   

13.
Onion skins are agricultural by-products that contain high levels of antioxidants, including quercetin and protocatechuic acid. The solubility of extracts can affect their antioxidant capacity in food oil matrices. The antioxidative properties of onion skin extracts with different polarity were compared and the chemical profiles of the extracts were identified by GC-MS. Highly lipophilic, moderately hydrophilic and highly hydrophilic onion skin extracts (HLE, MHE and HHE, respectively) were prepared and their antioxidant properties were tested using in vitro assays and bulk oil or oil-in-water (O/W) emulsions. The most abundant phenolic compounds in the onion skin extracts were quercetin and protocatechuic acid. The lipophilicity levels of HLE, MHE and HHE were 0.674, 0.394 and −1.225, respectively. HLE showed higher antioxidant capacity in bulk oil and O/W emulsion matrices compared to MHE and HHE. The antioxidant capacity of HLE was higher in the O/W emulsion than in the bulk oil system. Therefore, highly lipophilic onion skin extracts can be used as effective natural antioxidants in oil matrices, especially O/W emulsions.  相似文献   

14.
The structural properties of oil-in-water (O/W) emulsions, as well as their oxidative stability upon storage at 50 °C, were studied. Eight different formulations were prepared, with the aim of studying the effect of three variables: the composition of the oil phase, the presence of the flavonoid rutin and the homogenization procedure on the structure and the oxidative stability. It was found that high pressure homogenization, through droplet size reduction, stabilized the emulsions both against creaming and oil oxidation. The interfacial protein was also partially replaced by rutin, further improving the stability of the emulsions, whereas purification of the oil phase had hardly any effect. Thus, the structural and oxidative stability of emulsions was controlled by the size of the droplets and improved by the addition of rutin.  相似文献   

15.
Water‐in‐oil (W/O) emulsions can be used to encapsulate and control the release of bioactive compounds for nutrition fortification in fat‐based food products. However, long‐term stabilization of W/O emulsions remains a challenging task in food science and thereby limits their potential application in the food industry. To develop high‐quality emulsion‐based food products, it is essential to better understand the factors that affect the emulsions’ stability. In real food system, the stability situation of W/O emulsions is more complicated by the fact that various additives are contained in the products, such as NaCl, sugar, and other large molecular additives. The potential stability issues of W/O emulsions caused by these encapsulated additives are a current concern, and special attention should be given to the relevant theoretical knowledge. This article presents several commonly used methods for the preparation of W/O emulsions, and the roles of different additives (water‐ and oil‐soluble types) in stabilizing W/O emulsions are mainly discussed and illustrated to gain new insights into the stability mechanism of emulsion systems. In addition, the review provides a comprehensive and state‐of‐art overview of the potential applications of W/O emulsions in food systems, for example, as fat replacers, controlled‐release platforms of nutrients, and delivery carrier systems of water‐soluble bioactive compounds. The information may be useful for optimizing the formulation of W/O emulsions for utilization in commercial functional food products.  相似文献   

16.
Enzymatic bioconversion of rutin to quercetin‐3‐O‐glucoside (Q‐3‐G) by Penicillium decumbens naringinase was increased with reaction pH increased approximately to pH 6.0. It resulted in greater than 92% production of Q‐3‐G due to the removal of the terminal rhamnose at the controlled pH 6.0. The enzymatic bioconversion of rutin to Q‐3‐G was repetitively performed, yielding 84% after 5 batches with little quercetin formation. Interestingly, the water solubility of Q‐3‐G was enhanced 69‐ and 328‐fold over those of rutin and quercetin, which may make Q‐3‐G more bioavailable in food. Q‐3‐G was approximately 6‐ and 1.4‐fold more potent than rutin as an inhibitor of human intestinal maltase and human DL‐3‐hydroxy‐3‐methylglutalyl coenzyme A reductase. Q‐3‐G was less potent (16‐ and 1.3‐fold, respectively) than quercetin as an inhibitor of these enzymes. However, the results suggest that Q‐3‐G may be confirmed more effective and bioavailable food component than rutin and even quercetin because of its enhanced solubility and inhibitory properties. Practical Application : Bioconverted intermediate, quercetin‐3‐O‐glucoside (Q‐3‐G), was found and confirmed to be largely more soluble than rutin and quercetin in water solution, which might make it more bioavailable as food ingredient. In addition, Q‐3‐G inhibited mildly the intestinal maltase, which might act as antidiabetic substance by modulating the adsorption of glucose in the intestine.  相似文献   

17.
The effect of soybean lecithin addition on the iron‐catalyzed or chlorophyll‐photosensitized oxidation of emulsions consisting of purified canola oil and water (1:1, w/w) was studied based on headspace oxygen consumption using gas chromatography and hydroperoxide production using the ferric thiocyanate method. Addition levels of iron sulfate, chlorophyll, and soybean lecithin were 5, 4, and 350 mg/kg, respectively. Phospholipids (PLs) during oxidation of the emulsions were monitored by high performance liquid chromatography. Addition of soybean lecithin to the emulsions significantly reduced and decelerated iron‐catalyzed oil oxidation by lowering headspace oxygen consumption and hydroperoxide production. However, soybean lecithin had no significant antioxidant effect on chlorophyll‐photosensitized oxidation of the emulsions. PLs in soybean lecithin added to the emulsions were degraded during both oxidation processes, although there was little change in PL composition. Among PLs in soybean lecithin, phosphatidylethanolamine and phosphatidylinositol were degraded the fastest in the iron‐catalyzed and the chlorophyll‐photosensitized oxidation, respectively. The results suggest that addition of soybean lecithin as an emulsifier can also improve the oxidative stability of oil in an emulsion.  相似文献   

18.
Many studies have investigated the effect of emulsifiers on the oxidative stability of oil-in-water (O/W) emulsions. A better oxidative stability of surfactant-stabilised O/W emulsions as compared to protein-stabilised emulsions has been recently shown in conditions when the major part of the emulsifier is adsorbed at the oil-water interface and oxidation is induced by iron−ethylenediaminetetraacetic acid (EDTA) complex. In this work, the contribution of the interfacial layer to the oxidation of emulsified lipids is investigated under various incubation conditions, involving different oxidation mechanisms. O/W emulsions were formulated at pH 6.7 with limited amounts of emulsifiers in the aqueous phase. Emulsions were incubated either at 33 °C without initiator at 25 °C in the presence of iron/ascorbate, metmyoglobin or 2,2′-azobis(2-amidinopropane)-dihydrochloride (AAPH). Oxygen uptake and volatile compound formation confirmed that protein-stabilised emulsions are less oxidatively stable than Tween 20-stabilised ones. This work also shows complex oxidative interrelationships between oxidation initiator and certain proteins, such as β-casein and bovine serum albumin.  相似文献   

19.
Oil‐in‐water (O/W) emulsions with varying concentration of oil phase, medium‐chain triglyceride (MCT), were prepared using phase‐separating gum arabic (GA)/sugar beet pectin (SBP) mixture as an emulsifier. Stability of the emulsions including emulsion phase separation, droplet size change, and oil migration were investigated by means of visual observation, droplet size analysis, oil partition analysis, backscattering of light, and interfacial tension measurement. It was found that in the emulsions prepared with 4.0% GA/1.0% SBP, when the concentration of MCT was greater than 2.0%, emulsion phase separation was not observed and the emulsions were stable with droplet size unchanged during storage. This result proves the emulsification ability of phase‐separating biopolymer mixtures and their potential usage as emulsifiers to prepare O/W emulsion. However, when the concentration of MCT was equal or less than 2.0%, emulsion phase separation occurred after preparation resulting in an upper SBP‐rich phase and a lower GA‐rich phase. The droplet size increased in the upper phase whereas decreased slightly in the lower phase with time, compared to the freshly prepared emulsions. During storage, the oil droplets exhibited a complex migration process: first moving to the SBP‐rich phase, then to the GA‐rich phase and finally gathering at the interface between the two phases. The mechanisms of the emulsion stability and oil migration in the phase‐separated emulsions were discussed.  相似文献   

20.
The citrate/Cu2+‐catalysed degradation of quercetin and rutin (1.0 mM ) was studied in an aqueous model system, pH 8.0, at 97 °C, with respect to the addition of natural, water‐soluble antioxidants, including ascorbic acid (ASA), catechin (CT) and cysteine (CY). Quercetin decomposition was found to be inhibited to a significant extent by the addition of ASA and CY at millimolar ratios of 1:1 and 1:2, but CT gave significantly lower inhibition (P < 0.05) compared with both ASA and CY. In rutin solutions, significant inhibition (P < 0.05) was achieved only with the addition of CT and CY at a millimolar ratio of 1:2. The addition of both ASA and CY to solutions of either flavonol also inhibited browning (A420) development, but CT provoked significant increases. © 2002 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号