首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presence of T and NK cells in the human fetal liver and the fact that fetal liver hemopoietic progenitor cells develop into T and NK cells suggest a role for the fetal liver compartment in T and NK cell development. In this work, we show that the capacity of fetal liver progenitors to develop into T cells, in a human/mouse fetal thymic organ culture system, is restricted to an immature subset of CD34+ CD38- cells. No T cell-committed precursors are contained within the more differentiated CD34+ CD38+ population. This conclusion is supported by the observations that no TCR-delta gene rearrangements and no pre-TCR-alpha expression can be detected in this population. However, NK cells were derived from CD34+ CD38- and CD34+ CD38+ fetal liver cells cultured in the presence of IL-15, IL-7, and Flt-3 ligand. Eighty to ninety percent of cells arising from the CD34+ CD38+ population expressed the NK cell-associated markers CD56, CD16, CD94, and NKR-P1A. Several subpopulations of NK cell precursors were identified by differential expression of these receptors. Based on the detection of populations with a similar antigenic profile in freshly isolated fetal liver cells, we propose a model of NK cell differentiation. Collectively, our findings suggest that CD34+ cells differentiate into NK cells, but not into mature T cells, in the human fetal liver.  相似文献   

2.
Flt3 ligand (flt3L) has potent effects on hemopoietic progenitors, dendritic cells, and B lymphopoiesis. We have investigated the effects of flt3L on intrathymic precursors. The addition of flt3L + IL-7 to lobe submersion cultures of murine fetal thymic lobes resulted in the expansion of an immature population of Thy-1(low), CD44(high), HSA(high) cells. This population contained cells with precursor activity, as determined by their capacity to repopulate deoxyguanosine-treated fetal thymic lobes. Upon reentry to the thymic lobe, flt3L + IL-7-cultured Thy-1(low), CD44(high), HSA(high) cells underwent expansion and differentiation into B cells. Two weeks after fetal thymic organ culture following thymic lobe reconstitution, intrathymic cells were Thy-1-, B220+, and a subset was sIgM+. The intrathymic B cells shared features of adult thymic B cells, including CD5 expression and proliferative responses to IL-4 + IL-5 + CD40 ligand, but not to LPS or soluble anti-IgM. Ig production was noted upon stimulation with IL-4 + IL-5 + LPS and IL-4 + IL-5 + CD40 ligand. In conclusion, we have demonstrated that flt3L + IL-7 supports the expansion of a subset of progenitors present in the fetal thymus. The cultured progenitors can repopulate a fetal thymic lobe and develop into mature functional B cells, demonstrating that the fetal thymus is able to support B cell as well as T cell development.  相似文献   

3.
B cell development is influenced by interactions between B cell progenitors and stromal cells. The precise mechanisms by which these interactions regulate B cell differentiation are currently unknown. Flt3 ligand (FL) is a growth factor which stimulates the proliferation of stem cells and early progenitors. Mice deficient for the FLT3 receptor exhibit severe reductions in early B lymphoid progenitors. We have previously described a clonal assay in vitro which allows us to follow the entire B cell differentiation pathway from uncommitted progenitors to mature, immunoglobulin-secreting plasma cells. The growth factor combination of interleukin (IL)-11, mast cell growth factor (MGF) and IL-7 was shown to maintain the differentiation of these hematopoietic precursors into B cell progenitors capable of giving rise to functionally mature B cells in secondary cultures. Here, we show that FL in combination with IL-11 and IL-7 is sufficient to support the differentiation of uncommitted progenitors from day 10 yolk sac (AA4.1+) or day 12 fetal liver (AA4.1+ B220- Mac-1- Sca-1+) into the B lineage. The frequency of B cell progenitors obtained in these conditions was similar, if not better, than the frequency of B cell precursors that arose when cultured in IL-11+MGF+IL-7. Furthermore, the growth factor combination of IL-11+FL+ IL-7 was able to maintain the potential of bipotent precursors giving rise to both the B and myeloid lineages in secondary cultures. We also show that FL synergizes with IL-7 in the proliferation of committed B220+ pro-B cells and may contribute to the maintenance of an earlier pro-B cell population. Together, these results show that FL is important in supporting the differentiation and proliferation of early B cell progenitors in vitro.  相似文献   

4.
We have demonstrated that long-term culture initiating cells (LTC-IC) are maintained in a stroma noncontact (SNC) culture where progenitors are separated from stroma by a microporous membrane and LTC-IC can proliferate if the culture is supplemented with interleukin-3 (IL-3) and macrophage inflammatory protein-1alpha (MIP-1alpha). We hypothesize that the same conditions, which result in LTC-IC proliferation, may also maintain lymphoid progenitors. Natural killer (NK) cells are of lymphoid lineage and a stromal-based culture can induce CD34+/Lin-/DR- cells to differentiate along the NK cell lineage. We developed a three-step switch culture assay that was required to demonstrate the persistence of NK progenitors in CD34+/Lin-/DR- cells assayed in SNC cultures supplemented with IL-3 and MIP-1alpha. When CD34+/Lin-/DR- progeny from the SNC culture were plated sequentially into "NK cell progenitor switch" conditions (contact with stromal ligands, hydrocortisone-containing long-term culture medium, IL-2, IL-7, and stem cell factor [SCF]) followed by "NK cell differentiation" conditions (contact with stromal ligands, human serum, no hydrocortisone, and IL-2), significant numbers of CD56+/CD3- NK resulted, which exhibited cytotoxic activity against K562 targets. All steps are required because a switch from SNC cultures with IL-3 and MIP-1alpha directly to "NK cell differentiation" conditions failed to yield NK cells suggesting that critical step(s) in lymphoid commitment were missing. Additional experiments showed that CD34+/CD33- cells present after SNC cultures with IL-3 and MIP-1alpha, which contained up to 30% LTC-IC, are capable of NK outgrowth using the three-step switch culture. Limiting dilution analysis from these experiments showed a cloning frequency within the cultured CD34+/CD33- population similar to fresh sorted CD34+/Lin-/DR- cells. However, after addition of FLT-3 ligand, the frequency of primitive progenitors able to develop along the NK lineage increased 10-fold. In conclusion, culture of primitive adult marrow progenitors ex vivo in stroma-derived soluble factors, MIP-1alpha, and IL-3 maintains both very primitive myeloid (LTC-IC) and lymphoid (NK) progenitors and suggests that these conditions may support expansion of human hematopoietic stem cells. Addition of FLT-3 ligand to IL-2, IL-7 SCF, and stromal factors are important in early stages of NK development.  相似文献   

5.
Granulocyte colony-stimulating factor (G-CSF) stimulates the proliferation and restricted differentiation of hematopoietic progenitors into neutrophils. To clarify the effects of G-CSF on hematopoietic progenitors, we generated transgenic (Tg) mice that had ubiquitous expression of the human G-CSF receptor (hG-CSFR). In clonal cultures of bone marrow and spleen cells obtained from these mice, hG-CSF supported the growth of myelocytic as well as megakaryocytic, mast cell, mixed, and blast cell colonies. Single-cell cultures of lineage-negative (Lin-)c-Kit+Sca-1(+) or Sca-1(-) cells obtained from the Tg mice confirmed the direct effects of hG-CSF on the proliferation and differentiation of various progenitors. hG-CSF also had stimulatory effects on the formation of blast cell colonies in cultures using 5-fluorouracil-resistant hematopoietic progenitors and clone-sorted Lin-c-Kit+Sca-1(+) primitive hematopoietic cells. These colonies contained different progenitors in proportions similar to those obtained when mouse interleukin-3 was used in place of hG-CSF. Administration of hG-CSF to Tg mice led to significant increases in spleen colony-forming and mixed/blast cell colony-forming cells in bone marrow and spleen, but did not alter the proportion of myeloid progenitors in total clonogenic cells. These results show that, when functional G-CSFR is present on the cell surface, hG-CSF stimulates the development of primitive multipotential progenitors both in vitro and in vivo, but does not induce exclusive commitment to the myeloid lineage.  相似文献   

6.
We have developed a culture system allowing for generation of NK cells from human CD34+ bone marrow progenitors. The appearance of NK cells expressing CD56+, CD3- phenotype and large granular lymphocyte morphology was observed after 2-3 weeks of culture with IL-2. The NK cell appearance coincided with development of lytic activity. NK cells generated in bone marrow cultures proliferated actively (expansion index ranged from 2- to 200-fold). The phenotype of NK cells generated from CD34+ bone marrow deviated from peripheral blood NK cells in that a lower percentage of the former cells expressed CD16, CD2, CD7, and CD8 antigens. NK cells were also generated from CD34+ populations depleted of the CD34+, CD33+ subset indicating that myeloid-committed progenitors are not required for NK cell development. The dose of IL-2 was not important for generation of NK cells; however, only high doses of IL-2 supported development of optimal NK cell cytotoxic potential. Addition of TNF-alpha facilitated IL-2-dependent NK cell generation. These data showed that NK cells can develop from early bone marrow progenitors and that this system may be instrumental in studies on NK cell lineage and differentiation.  相似文献   

7.
8.
9.
The effects of stem cell factor (SCF) on the subpopulations of granulocyte/macrophage colony-forming units (CFU-GM) were examined. Hematopoietic progenitor cells were enriched from normal adult bone marrow specimens by immunomagnetic beads using an anti-CD34 antibody and lineage marker antibodies for positive selection and negative selection, respectively. SCF enabled neutrophil and neutrophil/macrophage mixed progenitors to respond to granulocyte/macrophage colony-stimulating factor (GM-CSF) or interleukin 3 (IL-3) and to develop the colony and further cluster formation. The neutrophil colonies stimulated by GM-CSF or IL-3 consisted mainly of immature cells, while the colonies stimulated by granulocyte colony-stimulating factor (G-CSF) consisted of mature neutrophils irrespective of the addition of SCF. In macrophage and eosinophil lineages, SCF augmented the colony formation in the presence of GM-CSF or IL-3, whereas the enhancement of total progenitor cell growth (colonies plus clusters) was not so marked as compared with the neutrophil lineage. Time-course observation revealed that SCF could stimulate macrophage and eosinophil progenitors to form colonies rapidly. These findings indicate that SCF acts on late myeloid progenitor cells in manners different from the lineages of commitment.  相似文献   

10.
11.
Colony formation of mouse primitive hemopoietic progenitors with interleukin-6 (IL-6) and 12-O-tetradecanoyl-phorbol-13-acetate (TPA), and their signal transduction were studied. Although IL-6 or TPA alone could not form colonies, their combination gave rise to significant number of colonies from Day-2 post 5-FU bone marrow cells. When colony numbers were compared with those supported by IL-3, IL-6+TPA gave rise to 86 + 47% of colonies formed with IL-3. Time course of colony formation with IL-6+TPA run parallel with that of IL-3. These colonies included not only granulocyte/macrophage (GM) colonies, but also granulocyte/erythrocyte/macrophage/megakaryocyte (GEMM) colonies and blast cell colonies. Delayed addition of IL-6 or TPA decreased colony numbers, suggesting that both IL-6 and TPA were needed from the start of cultures for maximal colony formation. When cultures were started with TPA, and IL-6 was added on Day 2 of culture or later, few colonies developed. These data suggested that IL-6 might be essential to the survival of the progenitors in culture. Chronic exposure of progenitors to TPA prior to the culture with IL-6+TPA suppressed colony formation. Addition of calphostin C, a specific protein kinase C (PKC) inhibitor or genistein and herbimycin A, specific tyrosine kinase (TK) inhibitors to the culture also decreased colony numbers formed with IL-6 and TPA. To clarify which effects of IL-6 or TPA on colony formation were blocked by the inhibitors, the inhibitors were added to preincubation of progenitors with IL-6. Both the PKC inhibitor and TK inhibitors blocked the increase of colonies resulted from a pre-incubation with IL-6. Although delayed addition of TPA enhanced IL-6-dependent colony formation, delayed addition of TPA with either the PKC inhibitor or TK inhibitors canceled the increase of colonies. These data suggested that both signals of IL-6 and TPA might be transduced via activation of PKC and TK, but further studies are needed to confirm that.  相似文献   

12.
During differentiation in vitro, embryonic stem (ES) cells generate progenitors for most hemato-lymphoid lineages. We studied the developmental potential of two ES cell subpopulations that share the fetal stem cell antigen AA4.1 but differ in expression of the lymphoid marker B220 (CD45R). Upon transfer into lymphoid deficient mice, the B220+ population generated a single transient wave of IgM+ IgD+ B cells but failed to generate T cells. In contrast, transfer of the B220- fraction achieved long-term repopulation of both T and B lymphoid compartments and restored humoral and cell-mediated immune reactions in the recipients. To assess the hemato-lymphopoietic potential of ES cell subsets in comparison to their physiological counterparts, cotransplantation experiments with phenotypically homologous subsets of fetal liver cells were performed, revealing a more potent developmental capacity of the latter. The results suggest that multipotential and lineage-committed lymphoid precursors are generated during in vitro differentiation of ES cells and that both subsets can undergo complete final maturation in vivo.  相似文献   

13.
To explore the modulatory effects of IL-2-activated NK cells on hematopoietic stem cell (HSC) engraftment further, we used fresh newborn liver cells (NLC) and IL-2-activated newborn liver cells (ANLC) as combined sources, respectively, of transplanted HSC and IL-2-activated NK cells free of contaminating CD3+ T cells. As previously found with adult IL-2-activated spleen cells, NLC cultured with IL-2 for 7 days exhibited lymphokine-activated killer (LAK) activity, veto activity, and natural suppressor activity, and enhanced both short-term and long-term stem cell engraftment by intact co-injected syngeneic and allogeneic NLC in totally MHC-mismatched lethally irradiated recipients. However, unlike adult IL-2-stimulated adult spleen cells, IL-2-activated NLC lacked CD3+ T cells and failed to induce lethal GVHD. FACS analysis and cell sorting experiments showed that the cells in ANLC which enhanced short-term HSC engraftment belonged to the relatively immature CD3-NK1.1-2B4+ NK cell subset. By contrast, cells belonging to the more mature CD3-NK1.1+2B4+ NK cell subset showed no HSC-enhancing effects. Identification and isolation in humans of similar NK cell enhancers of HSC could lead to a new approach to improving stem cell engraftment in MHC-mismatched recipients without increasing the risk of GVHD.  相似文献   

14.
In the present study, we investigated the differentiation of human NK cells from bone marrow, cord blood and mobilized peripheral blood purified CD34+ stem cells using a potent culture system. Elutriated CD34+ stem cells were grown for several weeks in medium supplemented with stem cell factor (SCF) and IL-15 in the presence or absence of a murine stromal cell line (MS-5). Our data indicate that IL-15 induced the proliferation and maturation of highly positive CD56+ NK cells in both types of culture, although murine stromal cells slightly increased the proliferation of NK cells. NK cells differentiated in the presence of MS-5 were mostly CD56+ CD7 and a small subset expressed CD16. These in vitro differentiated CD56+ NK cells displayed cytolytic activity against the HLA class I- target K562. The CD56+ CD16+ subset also lysed NK-resistant Daudi cells. Neither of these NK subsets were shown to express Fas ligand. Total CD56+ cells expressed high amounts of transforming growth factor-beta and granulocyte-macrophage colony-stimulating factor, but no IFN-gamma. Investigation of NK receptor expression showed that most CD56+ cells expressed membrane CD94 and NKG2-A mRNA. PCR analysis revealed that p58 was also expressed in these cells. The role of CD94 in NK cell-mediated cytotoxicity was assessed on human HLA-B7-transfected murine L cells. While a low cytotoxic activity towards HLA-B7 cells was observed, the HLA-DR4 control cells were killed with high efficiency. These studies demonstrate that cytolytic and cytokine-producing NK cells may be derived from adult and fetal precursors by IL-15 and that these cells express a CD94 receptor which may influence their lytic potential.  相似文献   

15.
Using a clonal assay of bone marrow (BM) cells from transgenic mice (Tg-mice) expressing the human granulocyte-macrophage colony-stimulating factor receptor (hGM-CSFR), we found in earlier studies that hGM-CSF alone supported the development not only of granulocyte-macrophage colonies, but also of erythrocytes, megakaryocytes, mast cells, blast cells, and mixed hematopoietic colonies. In this report, we evaluated the in vivo effects of hGM-CSF on hematopoietic and lymphopoietic responses in the hGM-CSFR Tg-mice. Administration of this factor to Tg-mice resulted in dose-dependent increases in numbers of reticulocytes and white blood cells (WBCs) in the peripheral blood. Morphological analysis of WBCs showed that the numbers of all types of the cell, including neutrophils, eosinophils, monocytes, and lymphocytes increased; the most remarkable being in lymphocytes that contained a number of large granular lymphocytes (LGLs) in addition to mature T and B cells. However, total cellularity of the BM of the Tg-mice decreased in a dose-dependent manner when hGM-CSF was injected. In sharp contrast to the BM, spleens of the Tg-mice were grossly enlarged. Although all types of blood cells and hematopoietic progenitors increased in the spleen, erythroid cells and their progenitors showed the most significant increase. Increased numbers of megakaryocytes and LGLs were also observed in spleen and liver of the treated Tg-mice. Flow cytometric analysis showed that LGLs expanded in Tg-mice expressed Mac-1+ CD3- NK1.1+. The thymus of Tg-mice treated with hGM-CSF exhibited a dose-dependent shrinkage and a remarkable decrease in CD4+ CD8+ cells. Thus, hGM-CSF stimulated not only myelopoiesis but also erythropoiesis and megakaryopoiesis of hGM-CSFR Tg-mice in vivo, in accordance with our reported in vitro findings. In addition, hGM-CSF affected the development of lymphoid cells, including natural killer cells of these Tg-mice.  相似文献   

16.
SJL mice are known for their poor IgE production upon helminth infection. In this study, we have demonstrated that SJL standard B cells (85% IgM+ or B220+), prepared by complement-mediated T cell lysis, failed to proliferate and to produce IgE and IgG1 in response to LPS plus IL-4 in vitro. This diminished IgE production was restored by anti-IL-12 and enhanced by additional treatment with anti-IL-18, suggesting active suppression by the cells that produce IL-12 and IL-18. Indeed, SJL standard B cells were contaminated with Mac-1+ cells. Therefore, we removed macrophages by passing standard B cells through a Sephadex G-10 column (G10). Resultant cells (95% IgM+), designated as G10-B cells, responded to LPS and IL-4 by their proliferation and differentiation. G-10 treatment markedly diminished the proportion of B220- cells and Mac-1+ cells in SJL standard B cells. Furthermore, addition of SJL B220- cells dose dependently and MHC independently inhibited LPS plus IL-4-induced B cell growth and IgE production in SJL and BALB/c B cells. B220- cells in SJL standard B cells contained Mac-1+ cells (51%) and Fas ligand+ CD4-CD8- double-negative CD3intIL-2R beta+ T cells (26%). Thus, IL-12 and IL-18 produced by LPS-stimulated Mac-1+ cells stimulate this unique subpopulation of T cells to produce IFN-gamma, which in combination with Fas ligand, inhibits IgE production from the B cells. Our present results indicate that Mac-1+ cells and double-negative CD3intIL-2R beta+ T cells, uniquely abundant in the spleens of SJL mice, inhibit IgE production, indicating their new role in IgE response.  相似文献   

17.
The receptor tyrosine kinase Flk-2/Flt3 was originally cloned from hematopoietic stem cell-enriched fetal liver and placenta and is believed by some investigators to play a role in the regulation of the hematopoietic stem cell. However, targeted disruption of the flt3 gene results in a specific deficiency in early B cell progenitors. Using an antagonistic monoclonal antibody developed against the extracellular domain of Flt3, we investigated the expression and function of the molecule on B lymphoid lineage cells in the bone marrow (BM) of adult mice. Approximately 10% of B220+ cells in the BM expressed Flt3 on the cell surface, and most of the cells belonged to a pro-B cell fraction when judged by an expression pattern of CD43, heat-stable antigen, and BP-1. However, B lymphoid precursor cells that are clonable in vitro could not be enriched in the B220+/Flt3+ cell fraction sorted by flow cytometry. Furthermore, proliferation of B lymphoid precursor cells in the adult BM was not blocked by administration of the antagonistic monoclonal antibodies against Flt3 and c-Kit, suggesting that signalings mediated by Flt3 and c-Kit receptors are not essential for the proliferation of B cell progenitors in adult mouse BM.  相似文献   

18.
Leptin, the product of obese gene, was originally identified as a factor regulating body-weight homeostasis and energy balance. The present study has shown that leptin acts on murine hematopoiesis in vitro. In the culture of bone marrow cells (BMC) of normal mice, leptin induced only granulocyte-macrophage (GM) colony formation in a dose-dependent manner, and no other types of colonies were detected even in the presence of erythropoietin (Epo). Leptin also induced GM colony formation from BMC of db/db mutant mice whose leptin receptors were incomplete, but the responsiveness was significantly reduced. The effect of leptin on GM colony formation from BMC of normal mice was also observed in serum-free culture, and comparable with that of GM-colony-stimulating factor (CSF ). Although leptin alone supported few colonies from BMC of 5-fluorouracil (5-FU)-treated mice in serum-free culture, remarkable synergism between leptin and stem cell factor (SCF ) was obtained in the colony formation. The addition of leptin to SCF enhanced the SCF-dependent GM colony formation and induced the generation of a number of multilineage colonies in the presence of Epo. When lineage (Lin)-Sca-1(+) cells sorted from BMC of 5-FU-treated mice were incubated in serum-free culture, leptin synergized with SCF in the formation of blast cell colonies, which efficiently produced secondary colonies including a large proportion of multilineage colonies in the replating experiment. In serum-free cultures of clone-sorted Lin-c-Kit+Sca-1(+) and Lin-c-Kit+Sca-1(-) cells, although synergism of leptin and SCF was observed in the colony formation from both cells, leptin alone induced the colony formation from Lin-c-Kit+Sca-1(-), but not Lin-c-Kit+Sca-1(+) cells. These results have shown that leptin stimulates the proliferation of murine myelocytic progenitor cells and synergizes with SCF in the proliferation of primitive hematopoietic progenitors in vitro.  相似文献   

19.
IL-4 is produced promptly in response to certain infections and plays a key role in the Th1/Th2 T cell dichotomy; however, the cellular source remains a matter of debate. Here we describe the induction of IL-4 in bone marrow cells of normal and RAG-/- mice by both Mycobacterium tuberculosis and its major cell wall glycolipid, lipoarabinomannan. Characterization of the cell type responsible indicated that it was distinct from the NK1+ or CD4+ T cell previously ascribed the function of rapid IL-4 secretion. Cell-sorting experiments identified CD19+/B220+ precursor cells, presumably pre-B cells that produced IL-4 constitutively and whose frequency was rapidly and markedly up-regulated by lipoarabinomannan. Thus, pathogenic mycobacteria and their glycolipids may influence hemopoiesis by rapidly inducing IL-4 secretion in the bone marrow.  相似文献   

20.
In vitro studies of human NK cell-mediated cytotoxicity and ADCC against porcine target cells were performed. Stimulation of human PBMC responder cells with either allogeneic or xenogeneic porcine cells led to a marked increase in NK cell reactivity. Maximum reactivity was reached following 3-6 days of in vitro culture. The sensitivity of target cells ranked as follows: K562 > porcine PHA-induced lymphoblasts > resting porcine PBMC. Limiting dilution analysis showed that allo- and xeno-stimulation in vitro led to differentiation of similar frequencies of effector NK cells. Split culture experiments showed that single NK effector cells were cytotoxic against both K562 and porcine lymphoblasts, demonstrating that individual NK cells lack species specificity. NK effector cell generation stimulated by xenogeneic cells was cyclosporin A (CsA) sensitive and dependent on the presence of autologous responder T lymphocytes, a dependence that was completely reconstituted by the sole addition of human IL-2. Xenostimulation of enriched CD3+ cells also led to a preferential appearance of CD16+ or CD56+ lymphoblasts. Natural xenoreactive human anti-porcine antibodies are mainly of IgM and IgG2 subclasses, but antibodies in xenoimmunised patients reactive against porcine lymphocytes and fetal porcine islet cells were also of IgG1 and IgG3 subclasses. The same subclass distribution was found among antibodies specific for gal(alpha)1,3 gal epitopes as shown by tests performed with alpha1,3 galactosyltransferase-transfected Raji cells (human Burkitt lymphoma cells). Natural antibodies did not mediate ADCC, whereas gal(alpha)1,3 gal-specific antibodies in sera from xenoimmunised patients did. Fetal porcine islet cells were sensitive to human NK cell-mediated cytotoxicity and to ADCC mediated by xenoimmune sera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号