首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Thin films of InSb have been grown on insulating GaAs substrates using the metalorganic chemical vapor deposition technique with trimethyl indium and trimethyl antimony as reactants. We find that the mobilities obtained are usually low unless indium is predeposited onto the substrate. This indium predeposition technique greatly improves the yield of InSb films with mobilities of ~50000 crn2V−1S−1 at room temperature and a typical thickness of 2 microns. With this predeposition technique, the electron mobilities of these films become relatively independent of the vapor stroichiometry during growth and of the growth temperature. The electron mobilities are also very uniform across a wafer. These properties are obtained even when the film growth rate exceeds 2 μm/h.  相似文献   

2.
Polycrystalline indium arsenide films have been grown on ceramic substrates using a chemical vapor transport technique. Proper temperature control during the heating portion of the growth cycle and a coplanar arrangement of the source and substrate promote the initial nucleation of the film growth. To obtain a high electron mobility in the films a large crystal size is required. This can be achieved by adjusting the heating rate. The film with the largest crystals, approximately 3 μm, and a thickness of 6·9 μm had a Hall mobility of 12,300 cm2/V sec at 1 kG and 295°K. These films generally have higher mobility than those obtained by vacuum evaporation. The Hall mobility is limited by film inhomogeneities as determined from temperature plots of mobility and of Hall coefficient, along with an analysis of the scattering mechanisms, crystal size, and magnetoresistance of the films.  相似文献   

3.
Indium droplet formation during the epitaxial growth of InxGa1−xN films is a serious problem for achieving high quality films with high indium mole fraction. In this paper, we studied the formation of indium droplets on the InxGa1−xN films grown by metalorganic chemical vapor deposition (MOCVD) using single crystal x-ray diffraction. It is found that the indium (101) peak in the x-ray diffraction spectra can be utilized as a quantitative measure to determine the amounts of indium droplets on the film. It is shown by monitoring the indium diffraction peak that the density of indium droplets increases at lower growth temperature. To suppress these indium droplets, a modulation growth technique is used. Indium droplet formation in the modulation growth is investigated and it is revealed in our study that the indium droplets problem has been partially relieved by the modulation growth technique.  相似文献   

4.
Electron mobility in SOS films   总被引:1,自引:0,他引:1  
Mobility of electrons in various thickness thin silicon films grown on two different high-temperature pre-epitaxial growth annealed sapphire substrates was measured as a function of the depth from the Si-SiO2 interface and the gate bias voltage at-50 to 120°C temperature range. The mobility is larger for electrons in thicker SOS films and in those films grown on higher temperature pre-epitaxial growth annealed sapphire substrates. Crystal defects, edge dislocations, and deep traps are found to play major roles of limiting the mobility of electrons in thin SOS films. For very thin SOS films the surface scattering process may not be an important factor which affects the electron mobility even when the surface is strongly accumulated.  相似文献   

5.
Magnetoresistors made from n-type indium antimonide are of interest for magnetic position sensing applications. In this study, tin-doped indium antimonide was grown by the metalorganic chemical vapor deposition technique using trimethylindium, trisdimethylaminoantimony, and tetraethyltin in a hydrogen ambient. Using a growth temperature of 370°C and a pressure of 200 Torr, it was found that the electron density in tin-doped films varied from 3.3×1016 cm−3 to 4.0×1017 cm−3 as the 5/3 ratio was varied from 4.8 to 6.8. From secondary ion mass spectroscopy (SIMS) studies, it was found that this variation is not caused by a change in site occupancy of the tin atoms from antimony to indium lattice sites, but rather to a change in the total tin concentration incorporated into the films. This dependence of tin incorporation on stoichiometry could be used to rapidly vary the doping level during growth. Undoped films grown under similar conditions had electron densities of about 2×1016 cm−3 and electron mobilities near 50,000 cm2V−1s−1 at room temperature for films that were only 1.5 μm thick on a gallium arsenide substrate. Attempts to grow indium antimonide at 280°C resulted in p-type material caused by carbon incorporation. The carbon concentration as measured with SIMS increased rapidly with increasing growth rate, to above 1019 cm−3 at 0.25 μm/h. This is apparently caused by incomplete pyrolysis of a reactant at this low growth temperature. Growth at 420°C resulted in rough surface morphologies. Finally, it was demonstrated that films with excellent electron mobility and an optimized doping profile for magnetoresistors can be grown.  相似文献   

6.
Growth pressure has a dramatic influence on the grain size, transport characteristics, optical recombination processes, and alloy composition of GaN and AlGaN films. We report on systematic studies which have been performed in a close spaced showerhead reactor and a vertical quartz tube reactor, which demonstrate increased grain size with increased growth pressure. Data suggesting the compensating nature of grain boundaries in GaN films is presented, and the impact of grain size on high mobility silicon-doped GaN and highly resistive unintentionally doped GaN films is discussed. We detail the influence of pressure on AlGaN film growth, and show how AlGaN must be grown at pressures which are lower than those used for the growth of optimized GaN films. By controlling growth pressure, we have grown high electron mobility transistor (HEMT) device structures having highly resistive (105 Ω-cm) isolation layers, room temperature sheet carrier concentrations of 1.2×1013 cm−2 and mobilities of 1500 cm2/Vs, and reduced trapping effects in fabricated devices.  相似文献   

7.
Hall and drift mobilities in molecular beam epitaxial grown GaAs   总被引:1,自引:0,他引:1  
A series of nominally undoped and Si-doped GaAs samples have been grown by molecular beam epitaxy (MBE) with Hall concentrations ranging from 1015 to 1019 cm−3 and mobilities measured at 77 and 300K by Hall-van der Pauw methods. Drift mobilities were calculated using the variational principle method and Hall scattering factors obtained from a relaxation-time approximation to permit cross-correlation of experimental data with drift or Hall mobilities and actual or Hall electron concentrations. At 77K, both high purity and heavily doped samples are well represented by either drift or Hall values since piezoelectric acoustic phonon scattering and strongly screened ionized impurity scattering hold the Hall factor close to unity in the respective regimes. Between n≊1015 and 1017 cm−3, where lightly screened ionized impority scattering predominates, Hall mobility overestimates drift mobility by up to 50 percent and Hall concentration similarly underestimates n. At 300K, polar optical phonons limit mobility and a Hall factor up to 1.4 is found in the lowest doped material, falling close to unity above about 1016 cm−3. Our calculation also agrees remarkably well with the Hall mobility of the highest purity MBE grown sample reported to date.  相似文献   

8.
Acid etching for accurate determination of dislocation density in GaN   总被引:2,自引:0,他引:2  
Hot phosphoric-acid etching and atomic force microscopy (AFM) were used to etch and characterize various GaN materials, including freestanding GaN grown by hydride vapor-phase epitaxy (HVPE), metal-organic chemical-vapor deposition (MOCVD) GaN films on sapphire and silicon carbide, and homoepitaxial GaN films on polished freestanding-GaN wafers. It was found that etching at optimal conditions can accurately reveal the dislocations in GaN; however, the optimal etch conditions were different for samples grown by different techniques. The as-grown HVPE samples were most easily etched, while the MOCVD homoepitaxial films were most difficult to etch. Etch-pit density (EPD) ranging from 4×106 cm−2 to 5×109 cm−2 was measured in close agreement with the respective dislocation density determined from transmission electron microscopy (TEM).  相似文献   

9.
A systematic study has been performed to determine the characteristics of an optimized nucleation layer for GaN growth on sapphire. The films were grown during GaN process development in a vertical close-spaced showerhead metalorganic chemical vapor deposition reactor. The relationship between growth process parameters and the resultant properties of low temperature GaN nucleation layers and high temperature epitaxial GaN films is detailed. In particular, we discuss the combined influence of nitridation conditions, V/III ratio, temperature and pressure on optimized nucleation layer formation required to achieve reproducible high mobility GaN epitaxy in this reactor geometry. Atomic force microscopy and transmission electron microscopy have been used to study improvements in grain size and orientation of initial epitaxial film growth as a function of varied nitridation and nucleation layer process parameters. Improvements in film morphology and structure are directly related to Hall transport measurements of silicon-doped GaN films. Reproducible growth of silicon-doped GaN films having mobilities of 550 cm2/Vs with electron concentrations of 3 × 1017 cm−3, and defect densities less than 108 cm−2 is reported. These represent the best reported results to date for GaN growth using a standard two-step process in this reactor geometry.  相似文献   

10.
There is a significant interest in the area of improving high temperature stable contacts to III-V semiconductors. Two attractive material systems that offer promise in this area are dysprosium phosphide/gallium arsenide (DyP/GaAs) and dysprosium arsenide/gallium arsenide (DyAs/GaAs). Details of epitaxial growth of DyP/GaAs and DyAs/GaAs by molecular beam epitaxy (MBE), and their characterization by x-ray diffraction, transmission electron microscopy, atomic force microscopy, Auger electron spectroscopy, Hall measurements, and high temperature current-voltage measurements is reported. DyP is lattice matched to GaAs, with a room temperature mismatch of less than 0.01% and is stable in air with no sign of oxidation, even after months of ambient exposure. Both DyP and DyAs have been grown by solid source MBE using custom designed group V thermal cracker cells and group III high temperature effusion cells. High quality DyP and DyAs epilayer were consistently obtained for growth temperatures ranging from 500 to 600°C with growth rates between 0.5 and 0.7 μm/h. DyP epilayers are n-type with electron concentrations of 3 × 1020 to 4 × 1020 cm−3, room temperature mobilities of 250 to 300 cm2/V·s, and a barrier height of 0.81 eV to GaAs. DyAs epilayers are also n-type with carrier concentrations of 1 × 1021 to 2 × 1021 cm−3, and mobilities between 25 and 40 cm2/V·s.  相似文献   

11.
A growth parameter study was made to determine the proper of a SiGe superlattice-type configuration grown on Si substrates by chemical vapor deposition (CVD). The study included such variables as growth temperature, layer composition, layer thickness, total film thickness, doping concentrations, and film orientation. Si and SiGe layers were grown using SiH4 as the Si source and GeH4 as the Ge source. When intentional doping was desired, diluted diborane for p-type films and phosphine for n-type films were used. The study led to films grown at ∼1000°C with mobilities from ∼20 to 40 percent higher than that of epitaxial Si layers and ∼100 percent higher than that of epitaxial SiGe layers grown on (100) Si in the same deposition system for net carrier concentrations of ∼8x1015 cm-3 to ∼2x1017 cm-3. Enhanced mobilities were found in multilayer (100)-oriented Si/Si1-xGex films for layer thicknesses ≥400A, for film thicknesses >2μm, and for layers with x = 0.15. No enhanced mobility was found for (111)-oriented films and for B-doped multilayered (100)-orlented films. Supported in part by NASA-Langley Research Center, Hampton, VA, Contract NAS1-16102 (R. Stermer & A. Fripp, Contr. Mon.)  相似文献   

12.
A wide range of samples of both n-type and p-type GaxIn1-xAsyP1-y on InP has been grown by LPE with carrier concentrations in the low 1016cm−3range. The electron mobility (μe) at room temperature decreased from about 4000 cm2V−1s−1 at y = 0 and passed through a shallow minimum near y = 0.25. At high y values, μe rose steeply, reaching 11 000 cm2V−1s−1 at the ternary boundary. In the p-type material the hole mobility (μp) varied from 140 cm V−1s−1 in InP, passed through a minimum of about 70 cm2V−1s−1 near y = 0.5 and then increased swiftly towards the ternary boundary. The temperature dependence of both μe and μp suggested the presence of alloy or space-charge scattering. In order to distinguish between these two mechanisms the pressure coefficient of the direct band-gap dEo/dP was measured as a function of y by observing the movement with pressure of the photoconductive edge. From dEo/dP the pressure variation of the effective mass was deduced. By measuring the change in electron and hole mobilities with pressure, it was then possible to establish that alloy scattering rather than space-charge scattering was occurring. From the composition dependence of the alloy scattering potentials for electrons and holes predictions have been made of the variation of μe and μP with temperature, pressure and dopant Presently a Nuffield Science Fellow concentration. At room temperature a maximum electron mobility of about 11,200 cm2V−1 s−1 is indicated. Presently a Nuffield Science Fellow  相似文献   

13.
High quality GaxIn1−xAs, lattice matched to InP, has been reproducibly grown by organometallic vapor phase epitaxy using trimethylgallium (TMGa), trimethylindium (TMIn), and AsH3 in an atmospheric pressure reactor with no observable adduct formation. For the first time, using TMIn, room temperature electron mobilities of 104 cm2/Vs and 77 K mobilities greater than 4 × 104 cm2/Vs have beep obtained. Residual donor doping densities in the low 1015 cm−3 range have been routinely obtained. Material with excellent morphology has been grown from 540 to 670 C with the highest quality material being obtained near 650 C. The 4 K photoluminescence (PL) peak due to carbon is not seen in the material grown at higher temperatures; however, it increases dramatically as the growth temperature is lowered. This increased carbon incorporation leads to a sharp drop in the electron mobility, which exhibits a T−0.5 behavior between 77 and 300 K. With optimum growth conditions, 4 K PL halfwidths of 4–5 meV are commonly observed. This high quality material is characterized by x-ray diffraction, PL, and Hall mobility measurements. Carbon and other impurity incorporation as a function of the growth parameters will be described.  相似文献   

14.
A quantitative mobility spectrum analysis (QMSA) of multiple magnetic field data has been used to determine the transport properties of bulk and surface electron species in InN films, grown by plasma-assisted molecular beam epitaxy (PAMBE) with varying substrate temperatures and In/N flux ratios. While all films have similar bulk electron densities, ∼4 × 1017 cm−3, the highest mobility was obtained in the highest growth temperature film (3100 cm2/V s at 150 K), while In-rich growth also gave good mobility values even at a much lower growth temperature. The surface sheet electron concentration increased with surface roughness, which increased with N-flux during growth.  相似文献   

15.
We have investigated, as a function of indium content x, the galvanomagnetic and Shubnikov de Haas (SdH) properties of two-dimensional electron gases (2DEG) formed at lattice matched, strain relaxed InAlAs/InGaAs heterojunctions. These were grown by molecular beam epitaxy on GaAs misoriented substrates with a two degree offcut toward the nearest (110) plane. Variable temperature resistivity and Hall measurements indicate an increase in the electron sheet density ns from 0.78×1012cm−2 for x=0.15 to 1.80×1012 cm−2 for x=0.40 at 300K, and from 0.75×1012cm−2 to 1.67×1012cm−2 at T=1.6K. The room temperature electron mobility, measured along the in plane [110], direction is independent of indium content and equals approximately 9500 cm2/Vs. For T<50K, the mobility is independent of temperature decreasing with increasing x from 82000 cm2/Vs for x=0.15 to 33000 cm2/Vs for x=0.40. The ratios (τtq) at 1.6K between the electron relaxation time τt and the single particle relaxation time τq, for the strain relaxed specimens, as well as for pseudomorphically strained Al0.35Ga0.65As/In0.15Ga0.85As structures grown on GaAs substrates, and In0.52Al0.48As/In0.53Ga0.47As heterostructures grown lattice matched on InP substrates. Such a study indicates the presence of inhomogeneities in the 2DEGs of the strain relaxed specimens which appear to be related to the process of strain relaxation. Such inhomogeneities, however, have little effect on the electron relaxation time τt which, at low temperatures, is limited principally by alloy scattering.  相似文献   

16.
High-quality AlxGa1−xAs layers with aluminum arsenide contentx up to 0.34 have been grown in a low pressure metalorganic chemical vapor deposition (MOCVD) system using trimethylgallium (TMG), trimethylamine alane (TMAA) and arsine. The carbon content in these films depended on growth conditions but was in general lower than in those obtained with trimethylaluminum (TMA) instead of TMAA in the same reactor under similar conditions. Unlike TMA grown layers, the TMAA grown AlxGa1−xAs layers, (grown at much lower temperature—down to 650° C), exhibited room temperature photolu-minescence (PL). Low temperature (25 K) PL from these films showed sharp bound exciton peaks with a line width of 5.1 meV for Al0.25Ga0.75As. A 39 period Al0.28Ga0.72As (5.5 nm)/GaAs (8.0 nm) superlattice grown at 650° C showed a strong PL peak at 25 K with a line width of 5.5 meV attesting to the high quality of these layers.  相似文献   

17.
Liquid-phase epitaxial (LPE) layers of Pb1−xSnxTe with an alloy composition 0≤×≤0.25 were doped n-type by adding from 0.002 to 10 at.% indium to the growth solution. Doping characteristics of indium and electrical properties of the epilayers at 77 and 4.2K were studied by Hall and resistivity measurements made directly on the grown layers. Electron concentration and mobility at 77 and 4.2K are presented as a function of indium doping for various x values. Doping coefficients of ~0.05 and ~0.03 are found for PbTe and Pb0.8Sn0.2Te, respectively, grown at ~450°C. For medium to high indium doping, the electron concentration saturates to a constant value independent of doping and LPE growth temperature. The saturation values decrease substantially with increasing x and increase with a decrease in sample temperature. Bulklike mobilities practically independent of doping are recorded up to an indium concentration Nln~0.3 at.%, above which the mobility decreases with increasing indium concentration. The data shows that indium is a suitable donor in liquid-phase epitaxial layers of Pbl-XSnxTe.  相似文献   

18.
P-type ZnO thin films were grown on sapphire substrates with and without nitrous oxide (N2O) by metal organic chemical vapor deposition (MOCVD). The intrinsic p-type ZnO films were achieved by controlling the Zn:O ratio in the range of 0.05–0.2 without N2O flow. Secondary ion mass spectroscopy (SIMS) showed that the films contained little or no nitrogen (N) impurities for all samples. The p-type behavior of the samples should be due to the intrinsic acceptor-like defects VZn, for ZnO film grown without nitrous oxide, and N, occupying O sites as acceptors for ZnO film grown with nitrous oxide. The best p-type ZnO film has low resistivity of 0.369 Ω-cm, high carrier density of 1.62×1019 cm−3, and mobility of 3.14 cm2/V-s. The obtained p-type ZnO films possess a transmittance of nearly 100% in the visible region and strong near-band-edge emission.  相似文献   

19.
The effects of different copper doping concentrations on the properties of SiO2 encapsulated CdSe films have been investigated. Two methods were used to dope the films with copper: ion implantation and diffusion from a surface layer. The room temperature dark resistivity of films annealed in oxygen at 450°C was found to increase as the copper concentration was increased until a maximum resistivity of 108 ohm cm occurred at a copper concentration of 1020 atoms cm−3. The room temperature resistivity in the light was found to be independent of the copper concentration and whether the films were annealed in argon or oxygen. During annealing the grains grew from 0.03 μm to 0.3 μm and this growth was independent of the doping or the annealing ambient. The energy levels, carrier mobilities, and microstructure of the annealed films were dependent on the method of doping. The ion implanted films had an additional energy level at 0.33 eV and their mobility was a factor of 4 smaller than films doped by the surface diffusion method, whose mobilities were 20 to 35 cm2V−1 s−1. The addition of chlorine to copper doped films had no effect on either the resistivity or photosensitivity but slowed the response times of the photocurrent by a factor of 10. No energy levels were observed which could be associated with the copper nor was the copper found to affect the density of the observed intrinsic levels at 0.65 and 1.1 eV.  相似文献   

20.
通过迁移率分析法对LPE和MBE生成的n-HgCdTe样品进行了研究,获得了样品中体电子,体空穴以及界面电子的迁移率和浓度,通过迁移率谱人地获得的样品中体电子和界面电子随温度的变化规律与理论分的完全吻合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号